Phân tích chất dinh dưỡng, độc tính và tác dụng chống HIV in vitro của Trianthema portulacastrum L. (họ Aizoaceae)

BMC Complementary Medicine and Therapies - Tập 24 - Trang 1-11 - 2024
Mahboob Adekilekun Jimoh1, Muhali Olaide Jimoh2,3, Mujidat Bello4, Idris Olawale Raimi5, Gideon Olarewaju Okunlola1, Nompumelelo Mkhwanazi6, Charles Petrus Laubscher2
1Department of Plant Biology, Osun State University, Osogbo, Nigeria
2Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
3Department of Plant Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
4National Biotechnology Development Agency, Abuja, Nigeria
5Department of Botany, Obafemi Awolowo University, Ile-Ife, Nigeria
6HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban South Africa

Tóm tắt

Sự phát triển của liệu pháp kháng retrovirus đã mang lại một sự giải tỏa lớn cho thế giới vì nó giảm thiểu tỷ lệ tử vong, giảm sự lây truyền HIV và hạn chế sự tiến triển của bệnh ở những bệnh nhân nhiễm bệnh. Tuy nhiên, liệu pháp kháng retrovirus truyền thống gặp phải một số hạn chế cần thiết phải tìm kiếm liên tục các hợp chất kháng virus dựa trên thực vật mới hơn, có thể vượt qua các rào cản hiện có do sự kháng thuốc và nhắm đến nhiều protein virus hơn. Mặc dù T. portulacastrum có thể ăn được và có nhiều lợi ích dược lý to lớn, nhưng rất ít thông tin được biết đến về hồ sơ dinh dưỡng của nó cũng như tiềm năng sử dụng như một nguồn thuốc kháng virus tự nhiên. Nghiên cứu này tập trung vào phân tích đầy đủ chế độ ăn và tiềm năng chống HIV của hai kiểu hình của T. portulacastrum. Các chiết xuất ethanolic từ cả hai kiểu hình của T. portulacastrum (T01 và T02) đã có tác dụng ức chế đáng kể sự sao chép của HIV-1. Cả hai chiết xuất đều gây ức chế ít nhất 50% tải lượng virus HIV-1 với các giá trị IC50 rất thấp là 1.757 mg/mL (T01) và 1.205 mg/mL (T02), điều này tương đương với tiêu chuẩn AZT. Thành phần protein trong khoảng từ 8.63-22.69%; chất béo (1.84-4.33%); độ ẩm (7.89-9.04%); chất xơ (23.84-49.98%); và hàm lượng carbohydrate (38.54-70.14%). Hàm lượng khoáng của T. portulacastrum được thử nghiệm thay đổi đáng kể ở các bộ phận khác nhau của cây. Khoáng nitơ N trong khoảng từ 13.8-36.3 mg/g; natri Na (2.0-14.0 mg/g); kali K (14.0-82.0 mg/g); magiê Mg (2.8-7.1 mg/g); canxi Ca (9.1-24.7 mg/g); phot pho P (1.3-3.6 mg/g); sắt Fe (193.5-984.0 ppm); kẽm Zn (42.5-96.0 ppm); mangan Mn (28.5-167.5 ppm); và đồng Cu (2.0-8.5 ppm). Những giá trị khoáng này tương đương hoặc cao hơn so với các giá trị đã trích dẫn cho các loại rau thông thường, cho thấy rằng T. portulacastrum là một loại rau giàu dinh dưỡng có thể cung cấp nguồn cung cấp dinh dưỡng kháng virus thay thế cho những người nhiễm HIV. Các nghiên cứu tiếp theo được khuyến nghị để khám phá các metabolite chính chịu trách nhiệm cho hồ sơ dinh dưỡng cao và tác dụng kháng retrovirus trong T. portulacastrum.

Từ khóa

#T. portulacastrum #HIV #thuốc kháng virus #dinh dưỡng #hợp chất thực vật

Tài liệu tham khảo

WHO. HIV- Global situation and trends. Geneva; 2021. Available from: https://www.who.int/data/gho/data/themes/hiv-aids. Kharsany ABM, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status. Challenges and Opportunities Open AIDS J. 2016;10:34 Bentham Science Publishers. Poltronieri P, Sun B, Mallardo M. RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load. Curr Genomics. 2015;16:327–35 (Bentham Science Publishers). Trobaugh DW, Klimstra WB. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol Med. 2017;23:80–93 (Elsevier Current Trends). Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44:3865–77 (Oxford University Press). Piot P, Abdool Karim SS, Hecht R, Legido-Quigley H, Buse K, Stover J, et al. Defeating AIDS - Advancing global health. Lancet. 2015;386:171–218 (Lancet Publishing Group). Alexaki A, Liu Y, Wigdahl B. Cellular Reservoirs of HIV-1 and their Role in Viral Persistence. Curr HIV Res. 2008;6:388–400 (Bentham Science Publishers). Siliciano JD, Siliciano RF. A long-term latent reservoir for HIV-1: discovery and clinical implications. J Antimicrob Chemother. 2004;54:6–9 (Oxford Academic). Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev. 2020;40:881–908 (John Wiley & Sons, Ltd). Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+T Cells: Differentiation and Functions. Clin Dev Immunol. 2012;2012:1–12. Hindawi Limited. Moir S, Chun TW, Fauci AS. Pathogenic mechanisms of HIV disease. Ann Rev Pathol. 2011;6:223–48. Salehi B, Anil Kumar NV, Şener B, Sharifi-Rad M, Kılıç M, Mahady GB, et al. Medicinal plants used in the treatment of human immunodeficiency virus. Int J Mol Sci. 2018;19:1459 (Multidisciplinary Digital Publishing Institute). Günthard HF, Aberg JA, Eron JJ, Hoy JF, Telenti A, Benson CA, et al. Antiretroviral treatment of adult HIV infection: 2014 Recommendations of the International Antiviral Society-USA panel. JAMA. 2014;312:410–25. Compston J. HIV infection and bone disease. J Intern Med. 2016;280:350–8 (John Wiley & Sons, Ltd). Obel N, Farkas DK, Kronborg G, Larsen CS, Pedersen G, Riis A, et al. Abacavir and risk of myocardial infarction in HIV-infected patients on highly active antiretroviral therapy: a population-based nationwide cohort study. HIV Med. 2010;11:130–6. Cihlar T, Fordyce M. Current status and prospects of HIV treatment. Curr Opin Virol. 2016;18:50–6 (Elsevier). Palshetkar A, Pathare N, Jadhav N, Pawar M, Wadhwani A, Kulkarni S, et al. In vitro anti-hiv activity of some indian medicinal plant extracts. BMC Complement Med Ther. 2020;20:1–11 (BioMed Central Ltd). Sukalingam K, Ganesan K, Xu B. Trianthema portulacastrum L. (giant pigweed): phytochemistry and pharmacological properties. Phytochem Rev. 2017;16:461–78 (Springer Netherlands). Falade T, Ishola IO, Akinleye MO, Oladimeji-Salami JA, Adeyemi OO. Antinociceptive and anti-arthritic effects of aqueous whole plant extract of Trianthema portulacastrum in rodents: Possible mechanisms of action. J Ethnopharmacol. 2019;238:1–11. Elsevier Ireland Ltd. Royal Botanic Gardens K (K). Trianthema portulacastrum Linn. (family Aizoaceae). Burkill, H.M. 1985. The useful plants of west tropical Africa, Vol 1. 2023. Cited 2023 Mar 8. Available from: https://plants.jstor.org/stable/10.5555/al.ap.upwta.1_119. Gaddeyya G, Kumar RPK. Botanical description, eco-physiology and control of Trianthema portulacastrum Linn. J Crop Weed. 2015;11:47–54. Sunder AS, Reddy ARN, Kiran G, Thirumurugu S. Anti-hyperlipidemic and antioxidant activity of methanolic extract of Trianthema portulacastrum in rats fed a high-fat diet. J Herbs Spices Med Plants. 2010;16:1–10. Shaltout K, Ahmed DA, Baraka DM, Shehata MN, Ahmed D, Arief OM. Distributional behavior and growth performance of Trianthema portulacastrum L. (Aizoaceae) in Nile Delta. Egypt J Botany. 2013:183–99. 3rd International Conference. Dogara AM, Labaran I, Yunusa A. Ethnobotany of medicinal plants with antimalarial potential in Northern Nigeria. Ethnobotany Res Appl. 2020;19:1–8. Mandal A, Bishayee A. Trianthema portulacastrum L. displays anti-inflammatory responses during chemically induced rat mammary tumorigenesis through simultaneous and differential regulation of NF-κB and Nrf2 Signaling Pathways. Int J Mol Sci. 2015;16:2426–45. Shivhare MK, Singour PK, Chaurasiya PK, Pawar RS. Trianthema portulacastrum Linn. (Bishkhapra). Pharmacogn Rev. 2012;6:132 Wolters Kluwer -- Medknow Publications. Igoli JO, Ogaji OG, Tor-Anyiin TA, Igoli NP. Traditional medicine practice amongst the Igede people of Nigeria. Part II. Afr J Tradit Complement Altern Med. 2005;2:134–52. Hussain A, Khan MN, Iqbal Z, Sajid MS. Anthelmintic activity of Trianthema portulacastrum L. and Musa paradisiaca L. against gastrointestinal nematodes of sheep. Vet Parasitol. 2011;179:92–9 (Elsevier B.V.). Khan N, Sultana A, Tahir N, Jamila N. Nutritional composition, vitamins, minerals and toxic heavy metals analysis of Trianthema portulacastrum L., a wild edible plant from Peshawar, Khyber Pakhtunkhwa Pakistan. Afr J Biotechnol. 2013;12:6079–85. Nzimande B, Kumalo H, Ndlovu S, Mkhwanazi NP. Secondary metabolites produced by endophytic fungi, Alternaria alternata, as potential inhibitors of the human immunodeficiency virus. Front Genet. 2022;13:1–14. Frontiers Media S.A. Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin C li, Bilska M, Greene KM, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods. 2014;409:131–46 (Elsevier). Naarding MA, Fernandez N, Kappes JC, Hayes P, Ahmed T, Icyuz M, et al. Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses. J Immunol Methods. 2014;409:161–73 (Elsevier). AOAC (Association of Official Analytical Chemist). Official Methods of Analysis. In: Latimer Jr. GW, editor. 20th ed. Washinton DC: AOAC International. ISBN 0935584870; 2016. Tshayingwe A, Jimoh MO, Sogoni A, Wilmot CM, Laubscher CP. Light Intensity and Growth Media Influence Growth. Nutr Phytochemical Content Trachyandra divaricata Kunth. 2023;13:247. USDA. National Nutrient Database for Standard Reference Release. Full Report (All Nutrients) 11003, Amaranth leaves, raw. 2018. p. 1–3. Bulawa B, Sogoni A, Jimoh MO, Laubscher CP. Potassium application enhanced plant growth, mineral composition, proximate and phytochemical content in Trachyandra divaricata Kunth (Sandkool). Plants. 2022;11:3183. Adegbaju OD, Otunola GA, Afolayan AJ. Proximate, mineral, vitamin and anti-nutrient content of Celosia argentea at three stages of maturity. S Afr J Botany. 2019;124:372–9 (Elsevier B.V.). BeMiller JN. Carbohydrate Analysis. Cham: Springer; 2017. p. 333–60. Talib WH, Mahasneh AM, Mahasneh AM. Antiproliferative Activity of Plant Extracts Used Against Cancer in Traditional Medicine. Scientia Pharmaceutica. 2010;78:33–46 Austrian Pharmaceutical Society. Aquaro S, Borrajo A, Pellegrino M, Svicher V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence. 2020;11:400 (Taylor & Francis). Jimoh MO, Kambizi L. Aquatic Phytotherapy: Prospects, Challenges and Bibliometric Analysis of Global Research Output on Medicinal Aquatic Plants from 2011 to 2020. In: Lall N, editor. Medicinal Plants for Cosmetics, Health and Diseases. 1st ed. Boca Raton: CRC Press (Taylor & Francis Group); 2022. p. 507–22. Jimoh MO, Afolayan AJ, Lewu FB. Suitability of Amaranthus species for alleviating human dietary deficiencies. S Afr J Botany. 2018;115:65–73 (SAAB). Iwu MM. African Medicinal Plants in the Search for New Drugs Based on Ethnobotanical Leads. Chadwick DJ, Marsh J, editors. Ciba Found Symp. John Wiley & Sons, Ltd; 2007. Jimoh MO, Afolayan AJ, Lewu FB. Therapeutic uses of Amaranthus caudatus L. Trop Biomed. 2019;36:1038–53. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites. 2019;9:1–13. MDPI AG. Gharibzahedi SMT, Jafari SM. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol. 2017;62:119–32 (Elsevier). Alegría- Alegría-Torán A, Barberá-Sáez R, Cilla-Tatay A. Bioavailability of minerals in foods. Handbook of Mineral Elements in Food. Wiley; 2015. p. 41–67. Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. Eur J Integr Med. 2020;35:101011 (Urban & Fischer). Hotz C, Gibson RS. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr. 2007;137:1097–100. Betoret E, Betoret N, Vidal D, Fito P. Functional foods development: Trends and technologies. Trends Food Sci Technol. 2011;22:498–508 (Elsevier). Diplock AT, Charuleux J-L, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, et al. Functional food science and defence against reactive oxidative species. Br Nutr. 1998;80:S77-112. Taroncher M, Vila-Donat P, Tolosa J, Ruiz MJ, Rodríguez-Carrasco Y. Biological activity and toxicity of plant nutraceuticals: an overview. Curr Opin Food Sci. 2021;42:113–8 (Elsevier). Pandey N, Meena R, Rai S, Pandey-Rai S. Medicinal plants derived nutraceuticals: a re-emerging health aid. Health Environ Res Online (HERO). 2011;2:419–41. Lino S, Marshak HH, Patti Herring R, Belliard JC, Hilliard C, Campbell D, et al. Using the theory of planned behavior to explore attitudes and beliefs about dietary supplements among HIV-positive Black women. Complement Ther Med. 2014;22:400–8 (Churchill Livingstone). Brown AC. An overview of herb and dietary supplement efficacy, safety and government regulations in the United States with suggested improvements. Part 1 of 5 series. Food Chem Toxicol. 2017;107:449–71 (Elsevier Ltd). Durazzo A, D’Addezio L, Camilli E, Piccinelli R, Turrini A, Marletta L, et al. From plant compounds to botanicals and back: a current snapshot. Molecules. 2018;23:1844 (Multidisciplinary Digital Publishing Institute). Sabde S, Bodiwala HS, Karmase A, Deshpande PJ, Kaur A, Ahmed N, et al. Anti-HIV activity of Indian medicinal plants. J Nat Med. 2011;65:662–9 (Springer). Prinsloo G, Marokane CK, Street RA. Anti-HIV activity of southern African plants: current developments, phytochemistry and future research. J Ethnopharmacol. 2018;210:133–55 (Elsevier). Barthakur NN, Arnold NP. Nutritive value of the chebulic myrobalan (Terminalia chebula Retz.) and its potential as a food source. Food Chem. 1991;40:213–9 (Elsevier). Raimi IO, Musyoki AM, Olatunji OA, Jimoh MO, Dube WV, Olowoyo JO. Potential medicinal, nutritive and antiviral food plants: Africa’s plausible answer to the low Covid-19 mortality. J Herbmed Pharmacol. 2021;11:20–34 (Shahrekord University of Medical Sciences). Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008;131:111–20 (Elsevier). de Clercq E. Emerging anti-HIV drugs. Expert Opin Emerg Drugs. 2005;10:241–74. Ajayi OB, Bamidele TJ, Malachi OI, Oladejo AA. Comparative proximate, minerals and antinutrient analysis of selected Nigerian leafy vegetables. J Appl Life Sci Int. 2018;16:1–8. Salehi B, Tumer TB, Ozleyen A, Peron G, Dall’Acqua S, Rajkovic J, et al. Plants of the genus Spinacia: From bioactive molecules to food and phytopharmacological applications. Trends Food Sci Technol. 2019;88:260–73 Elsevier. Jimoh MO, Afolayan AJ, Lewu FB. Nutrients and antinutrient constituents of Amaranthus caudatus L. Cultivated on different soils. Saudi J Biol Sci. 2020;27:3570–80. https://doi.org/10.1016/j.sjbs.2020.07.029. (King Saud University). Ogundola AF, Bvenura C, Afolayan AJ. Nutrient and Antinutrient Compositions and Heavy Metal Uptake and Nutrient and Antinutrient Compositions and Heavy Metal Uptake and Accumulation in S. nigrum. Sci World J. 2018;2018:1–20. Chauhan A, Kumari N, Saxena DC, Singh S. Effect of germination on fatty acid profile, amino acid profile and minerals of amaranth (Amaranthus spp.) grain. J Food Measure Character. 2022;16:1777–86 (Springer). Idris OA, Wintola OA, Afolayan AJ. Comparison of the proximate composition, Vitamins (Ascorbic acid, α-Tocopherol and retinol), anti-nutrients (phytate and oxalate) and the GC-MS analysis of the essential oil of the root and leaf of Rumex crispus L. Plants. 2019;8:1–15. MDPI AG. Jasson TI, Jimoh MO, Daniels CW, Nchu F, Laubscher CP. Enhancement of Antioxidant Potential, Phytochemicals, Nutritional Properties, and Growth of Siphonochilus aethiopicus (Schweinf.) B.L.Burtt with Different Dosages of Compost Tea. Horticulturae. 2023;9:274 (Multidisciplinary Digital Publishing Institute). Kohli D, Champawat PS, Mudgal VD. Asparagus (Asparagus racemosus L.) roots: nutritional profile, medicinal profile, preservation, and value addition. J Sci Food Agric. 2022;103:2239–50. Wiley. Zhang J, Phan ADT, Srivarathan S, Akter S, Sultanbawa Y, Cozzolino D. Proximate composition, functional and antimicrobial properties of wild harvest Terminalia carpentariae fruit. J Food Measure Character. 2022;16:582–9 (Springer).