In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494)

Springer Science and Business Media LLC - Tập 2 - Trang 1-11 - 2018
Julie M. Parmentier1, Jeff Voss1, Candace Graff1, Annette Schwartz1, Maria Argiriadi1, Michael Friedman1, Heidi S. Camp2, Robert J. Padley2, Jonathan S. George1, Deborah Hyland1, Matthew Rosebraugh3, Neil Wishart1, Lisa Olson1, Andrew J. Long1
1Immunology Discovery Research, AbbVie Bioresearch Center, Worcester, USA
2Immunology Clinical Development, AbbVie, North Chicago, USA
3Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, USA

Tóm tắt

Anti-cytokine therapies such as adalimumab, tocilizumab, and the small molecule JAK inhibitor tofacitinib have proven that cytokines and their subsequent downstream signaling processes are important in the pathogenesis of rheumatoid arthritis. Tofacitinib, a pan-JAK inhibitor, is the first approved JAK inhibitor for the treatment of RA and has been shown to be effective in managing disease. However, in phase 2 dose-ranging studies tofacitinib was associated with dose-limiting tolerability and safety issues such as anemia. Upadacitinib (ABT-494) is a selective JAK1 inhibitor that was engineered to address the hypothesis that greater JAK1 selectivity over other JAK family members will translate into a more favorable benefit:risk profile. Upadacitinib selectively targets JAK1 dependent disease drivers such as IL-6 and IFNγ, while reducing effects on reticulocytes and natural killer (NK) cells, which potentially contributed to the tolerability issues of tofacitinib. Structure-based hypotheses were used to design the JAK1 selective inhibitor upadacitinib. JAK family selectivity was defined with in vitro assays including biochemical assessments, engineered cell lines, and cytokine stimulation. In vivo selectivity was defined by the efficacy of upadacitinib and tofacitinib in a rat adjuvant induced arthritis model, activity on reticulocyte deployment, and effect on circulating NK cells. The translation of the preclinical JAK1 selectivity was assessed in healthy volunteers using ex vivo stimulation with JAK-dependent cytokines. Here, we show the structural basis for the JAK1 selectivity of upadacitinib, along with the in vitro JAK family selectivity profile and subsequent in vivo physiological consequences. Upadacitinib is ~ 60 fold selective for JAK1 over JAK2, and > 100 fold selective over JAK3 in cellular assays. While both upadacitinib and tofacitinib demonstrated efficacy in a rat model of arthritis, the increased selectivity of upadacitinib for JAK1 resulted in a reduced effect on reticulocyte deployment and NK cell depletion relative to efficacy. Ex vivo pharmacodynamic data obtained from Phase I healthy volunteers confirmed the JAK1 selectivity of upadactinib in a clinical setting. The data presented here highlight the JAK1 selectivity of upadacinitinib and supports its use as an effective therapy for the treatment of RA with the potential for an improved benefit:risk profile.

Tài liệu tham khảo

Geiler J, Buch M, McDermott MF. Anti-TNF treatment in rheumatoid arthritis. Curr Pharm Des. 2011;17(29):3141–54. Genovese MC, McKay JD, Nasonov EL, Mysler EF, da Silva NA, Alecock E, et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 2008;58:2968–80. Kremer JM, Westhovens R, Leon M, Di Giorgio E, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003;349:20. Keystone E, Emery P, Peterfy CG, Tak PP, et al. Rituximab inhibits structural joint damage in patients with rheumatoid arthritis with an inadequate response to tumor necrosis factor inhibitor therapies. Ann Rheum Dis. 2009;68:216–21. Ihle JN. Cytokine receptor Signalling. Nature. 1995;377:591–4. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9. Guschin D, Rogers N, Briscoe J, Witthuhn B, Watling D, Horn F, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 1995;14:1421–9. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. JAK2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93:397–409. Suzuki K, Nakajima H, Saito Y, Saito T, et al. Janus kinase 3 (JAK3) is essential for common cytokine receptor gamma chain (gamma (c))-dependent signaling: comparative analysis of gamma (c), JAK3, and gamma(c) and JAK3 double-deficient mice. Int Immunol. 2000;12(2):123–32. Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs. Immunity. 2012;36:515–28. Fleischmann R, Cutolo M, Genovese MC, Lee EB, et al. Phase IIb Dose-Ranging Study of the Oral JAK Inhibitor Tofacitinib (CP-690,550) or Adalimumab Monotherapy Versus Placebo in Patients With Active Rheumatoid Arthiritis With an Inadequate Response to Disease-Modifying Antirheumatic Drugs. Arthritis Rheum. 2012;64(3):617–29. Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010;7:41. Menon MP, Fang J, Wojchowski DM. Core erythropoietin receptor signals for late erythroblast development. Blood. 2006;107:2662–72. Friedman M, Frank KE, Aguirre A, Argiriadi MA, Davis H, Edmunds JJ, et al. Structure activity optimization of 6H-pyrrolo [2,3-e][1,2,4] triazolo [4,3-a] pyrazines as JAK1 kinase inhibitors. Bioorg Med Chem Lett. 2015;25:4399–404. Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood. 2006;107:176–83. Carson WE, Fehniger TA, Haldar S, Eckhert K, et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest. 1997;99(5):937–43. Warmuth M, Sungjoon K, Xiang-ju G, et al. Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol. 2007;19(1):55–60. Young DA, Hegen M, Ma HL, Whitters MJ, et al. Blockade of the Interleukin-21/Interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid Arthiritis. Arthritis Rheum. 2007;56:1152–63. Kremer JM, Emery P, Camp HS, Friedman A, et al. A Phase IIb Study of ABT-494, a Selective JAK-1 Inhibitor, in Patients With Rheumatoid Arthritis and an Inadequate Response to Anti-Tumor Necrosis Factor Therapy. Arthritis Rheumatol. 2016;68(12):2867–77. Genovese MC, Smolen JS, Weinblatt ME, Burmester GR, et al. Efficacy and Safety of ABT-494, a Selective JAK-1 Inhibitor, in a Phase IIb Study in Patients With Rheumatoid Arthiritis and an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2016;68(12):2857–66.