In silico detection of Cucurbitacin-E on antioxidant enzymes of model organism Galleria mellonella L. (Lepidoptera: Pyralidae) and variation of antioxidant enzyme activities and lipid peroxidation in treated larvae

Fahriye Sümer Ercan1, Hatice Baş2, Serap Yalçın Azarkan3
1Department of Plant Protection, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, Türkiye
2Department of Biology, Faculty of Science and Art, Yozgat Bozok University, Yozgat, Türkiye
3Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Türkiye

Tóm tắt

In silico studies further provided predictive binding properties of selected ligands for inhibition of target protein. In the study, molecular binding poses of Cucurbitacin-E and antioxidant enzymes (glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) of Galleria mellonella were determined in silico. Cucurbitacins are the most important components of Ecballium elaterium. The first cucurbitacin isolated from the plant was Cucurbitacin-E. In this study, the toxic effect of E. elaterium (L.) A. Rich. (Cucurbitaceae) fruit juice on G. mellonella (Lepidoptera: Pyralidae) larvae, which is known as a good model insect, was also detected, and its effect on antioxidant enzyme activities and lipid peroxidation was revealed. The plant fruit juice was tested on the target larvae of G. mellonella with different doses for 24 h. After the application, mortality rate, LC50, LC90 and LC99 values, the malondialdehyde (MDA) level and the activity changes of antioxidant enzymes were determined. Mortality increased with the increasing concentration of fruit juice. Also, increasing doses of essential oil caused decreasing in SOD, CAT, GST GPx, GR and AChE activities and increasing in MDA levels. As a result of in silico studies, maximum binding energy was obtained from G. mellonella CAT enzyme with Cucurbitacin E as a ligand. This is the first study to demonstrate the in silico binding potential of Cucurbitacin E on G. mellonella enzymes. The results indicate that E. elaterium can be used against G. mellonella in a pest control program.

Từ khóa


Tài liệu tham khảo

Chiej R (1988) The Macdonald Encylopedia of medicinal plants. Mcdonald & Co. Ltd., London, pp 66–73 Eken C, Özbek K, Yıldırım CK, Eray O (2008) Severe uvular edema and nasal mucosal necrosis due to Ecbalium elaterium (squirting cucumber): an allergic reaction or direct toxic effect. Clin Toxicol (Phila) 46:257–258 Lavie D, Szinai S (1958) The constituents of Ecballium elaterium 11. (-Elaterin, ). Am Chem Soc 80:707–710 Balbaa SI, Zaki AY, El-zalabani SM (1978) Qualitative study of the cucurbitacin content Ecballium elaterium A. Rich. growing in Egypt. Egypt J Pharm Sci 19(1–4):253–259 Balbaa SI, Zaki AY, El-zalabani SM (1979) Cucurbitacin content in the different organs of Ecballium elaterium (A. Rich.) cultivated in Egypt. Egypt J Pharm Sci 20(1–4):221–228 Atasü E, Cihangir V (1985) Ecballium elaterium L. bitkisinin farmakognozide yeri. Pharmacia JIPA 3(25:55):391–395 Yeşilada E, Tanaka S, Sezik E, Tabata M (1988) Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium. J Nat Prod 51(3):504–508 Agil MA, Risco S, Miro M, Navarro MC, Oceta MA, Jimenez J (1995) Analgesic and antipyretic effects of Ecballiuın elaterium (L.) A. Richard extract in rodent. Phytother Res 9:135–138 Gallily R, Shohat B, Kalish J, Gitter S, Lavie D (1962) Further studies on the antitumor effect of cucurbitacins. Cancer Res 22:1038–1045 Gaballa HS, Wahba MN, Naroz MH (2017) Antioxidant and insecticidal effect of squirting cucumber, Ecballium elaterium extracts against Aphis craccivora and Phthorimaea operculella. J Entomol Zool Stud 5(5):1980–1985 Alkaş İ (2007) Besin Bileşenlerinin Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) Larvalarının Gelişme ve Protein Sentezine Etkileri. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi 29p Erler F (2005) Fumigant activity of six monoterpenoids from aromatic plants in Turkey against the two storedproduct pests confused flour beetle, Tribolium confusum, and Mediterranean flour moth, Ephestia kuehniella. J Plant Dis Prot 112:602–611 Negahban M, Moharramipour S, Sefidkon F (2007) Fumigant toxicity of essential oil from Artemisia siberi Besser against three stored-product insects. J Stored Prod Res 43:123–128 Ayvaz A, Karaborklu S, Sagdıc O (2009) Fumigant toxicity of five essential oils against the eggs of Ephestia kuehniella Zeller and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Asian J Chem 21:596–604 Ercan FS, Baş H, Koç M, Pandır D, Öztemiz S (2013) Insecticidal activity of essential oil of Prangos ferulacea (Umbelliferae) against Ephestia kuehniella (Lepidoptera: Pyralidae) and Trichogramma embryophagum (Hymenoptera: Trichogrammatidae). Turk J Agric For 37:719–725 Sefer NE, Büyükgüzel K (2018) Piperazinin Galleria mellonella’nın Yaşama Gelişimi Üzerine Etkisi. Karaelmas Sci Eng J 8(1):365–372 Altundaş H, Duman E (2017) Toxicological effects of the entomopathogenic Purpureocillium lilacinus on the model organism, Galleria mellonella. Biol Divers Conserv 10(1):153–159 Alvandial A, Jawadi MH, Altıntaş ZN, Yıldız N, Karaman M (2016) Candida albicans’ın Salgısal Asit Proteinaz Etkinliğinin Araştırılmasında In Vivo Model Olarak Galleria mellonella Larvanın Kullanılması. J Turk Soc Microb 46(2):69–75 Abbott W (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18:265–267 Büyükgüzel E, Kalender Y (2009) Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella. Pestic Biochem Phys 94(2–3):112–118 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275 Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474 Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126 Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biochem 249:7130–7139 Paglia DE, Valentine WN (1987) Studies on the quantative and qualita tive characterization of glutathione peroxidase. J Lab Clin Med 70:158–165 Ellman GL, Courtney KD, JrV A, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95 Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25 Apaydin FG, Kalender S, Bas H, Demir F, Kalender Y (2015) Lead nitrate ınduced testicular toxicity in diabetic and non-diabetic rats: protective role of sodium selenite. Braz Arch Biol Technol 58(1):68–74 Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of dock- ing with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461 Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858 Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y (2021) Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep Methods 1:100014 Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8 Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:174–181 Anderson R, Weng Z, Campbell RK, Jiang X (2005) Main-chain conformational tendencies of amino acids. Proteins 60(4):679–689 Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(1):363–367 Touihria I, Kallech-Ziria O, Boulilaa A, Fatnassia S, Marrakchi N, Luis J, Hanchi B (2019) Ecballium elaterium (L.) A. Rich. seed oil: chemical composition and antiproliferative effect on human colonic adenocarcinoma and fibrosarcoma cancer cell lines. Arab J Chem 12(8):2347–2355 Hamidi M, Ghasemi S, Bighdilou BB, Koohi DE, Yousefbeyk F (2020) Evaluation of antioxidant, antibacterial and cytotoxic activity of methanol extract from leaves and fruits of Iranian Squirting Cucumber (Ecballium elaterium (L.) A. Rich). Res J Pharmacogn 7(1):23–29 Torkey HM, Abou-Yousef HM, Abdel Azeiz AZ, Hoda EA (2009) Insecticidal effect of Cucurbitacin E glycoside isolated from Citrullus colocynthis against Aphis craccivora farid. Aust J Basic Appl Sci 3(4):4060–4066 Apaydin FG, Kalender S, Bas H, Demir F, Kalender Y (2015) Lead nitrate induced testicular toxicity in diabetic and non-diabetic rats: protective role of sodium selenite. Braz Arch Biol Technol 58(1):68–74 Bas H, Kalender S, Pandir D (2014) In vitro effects of quercetin on oxidative stress mediated in human erythrocytes by benzoic acid and citric acid. Folia Biol 62(1):59–66 Kara O, Bas H, Pandir D (2016) Furan toxicity on testes and protective role of lycopene in diabetic rats. J Turk Ger Gynecol Assoc 17(4):191–196 Bas H, Kara O, Kara M, Pandir D (2013) Protective effect of vardenafil on ischemia-reperfusion injury in rat ovary. Turk J Med Sci 43(5):684–689 Bas H, Pandir D (2016) Protective effects of lycopene on furan-treated diabetic and non-diabetic rat lung. Biomed Environ Sci 29(2):143–147 Hazarika A, Sarkar SN, Kataria M, Malik JK (2003) Influence of malathion pretreatment on the toxicity of anilofos in male rats: a biochemical interaction study. Toxicology 185:1–8