Tính Khả Dung Protein In Vitro và Hồ Sơ Axit Béo của Các Sản Phẩm Sữa Thực Vật Thương Mại

Foods - Tập 9 Số 12 - Trang 1784
Eliana Martínez-Padilla1, Kexin Li1, Heidi Blok Frandsen1,2, Marcel Skejovic Joehnke1, Einar Vargas‐Bello‐Pérez3, Iben Lykke Petersen1
1Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
2SiccaDania, Pilehøj 18, DK-3460 Birkerød, Denmark
3Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark

Tóm tắt

Các sản phẩm thay thế sữa có nguồn gốc thực vật (PBMA) đang trở thành một xu hướng thực phẩm mới phổ biến trong số người tiêu dùng ở châu Âu và Bắc Mỹ. Dự đoán cho thấy giá trị của PBMA sẽ gấp đôi vào năm 2023. Mục tiêu của nghiên cứu này là phân tích giá trị dinh dưỡng của các sản phẩm thương mại dựa trên hồ sơ axit béo và tính khả dụng của protein từ PBMA thương mại. Tám sản phẩm PBMA thương mại có sẵn trên thị trường đã được chọn để phân tích axit béo, thực hiện bằng phương pháp sắc ký khí của các axit béo metyl hóa (GC-FAME), từ đó bốn sản phẩm thương mại (nước hạnh nhân, nước cây gai dầu, nước yến mạch và nước đậu nành) đã được chọn để phân tích khả năng tiêu hóa protein ngắn hạn in vitro (IVPD). Kết quả phân tích axit béo cho thấy hầu hết các sản phẩm chủ yếu chứa axit oleic (C18:1 ω-9) và axit linoleic (C18:2 ω-6). Nước cây gai dầu có tỷ lệ omega-6/omega-3 (ω6/ω3) cao nhất trong tất cả các sản phẩm đã thử nghiệm (3.43). Nước yến mạch và nước hạnh nhân là các PBMA có tính khả dụng protein ngắn hạn cao nhất, không khác biệt có ý nghĩa so với sữa bò, trong khi nước đậu nành cho thấy giá trị khả năng tiêu hóa protein thấp nhất. Kết luận, PBMA cho thấy sự biến đổi đáng kể tùy thuộc vào nguồn gốc thực vật, cả về thành phần axit béo và tính khả dụng của protein. Những kết quả này cung cấp thông tin dinh dưỡng sâu hơn cho việc phát triển sản phẩm trong tương lai và lựa chọn của người tiêu dùng.

Từ khóa

#sữa thực vật #axit béo #khả năng tiêu hóa protein #dinh dưỡng #sản phẩm thương mại

Tài liệu tham khảo

(2020, July 22). Dairy Alternatives Market by Source (Soy, Almond, Coconut, Rice, Oats, Hemp), Application (Milk, Cheese, Yogurt, Ice Creams, Creamers), Distribution Channel (Supermarkets, Health Stores, Pharmacies), Formulation and Region—Global Forecast to 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/dairy-alternative-plant-milk-beverages-market-677.html.

Conway, J. (2019, September 02). Value of the Plant-Based Beverage Market Worldwide from 2017 to 2023 (in Million U.S. Dollars). Available online: https://www.statista.com/statistics/948450/plant-based-beverages-market-value-worldwide/.

Fuentes, 2017, Making a market for alternatives: Marketing devices and the qualification of a vegan milk substitute, J. Mark. Manag., 33, 529, 10.1080/0267257X.2017.1328456

Derbyshire, 2017, Flexitarian diets and health: A review of the evidence-based literature, Front. Nutr., 3, 55, 10.3389/fnut.2016.00055

Lynch, H., Johnston, C., and Wharton, C. (2018). Plant-based diets: Considerations for environmental impact, protein quality, and exercise performance. Nutrients, 10.

Pimentel, 2003, Sustainability of meat-based and plant-based diets and the environment, Am. J. Clin. Nutr., 78, 660S, 10.1093/ajcn/78.3.660S

Sethi, 2016, Plant-based milk alternatives an emerging segment of functional beverages: A review, J. Food Sci. Technol., 53, 3408, 10.1007/s13197-016-2328-3

Hoefkens, 2017, Healthy, sustainable and plant-based eating: Perceived (Mis) match and involvement-based consumer segments as targets for future policy, Food Policy, 69, 46, 10.1016/j.foodpol.2017.03.001

McCarthy, 2017, Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk?, J. Dairy Sci., 100, 6125, 10.3168/jds.2016-12519

Dayton, S., Pearce, M.L., Hashimoto, S., Dixon, W.J., and Tomiyasu, U. (1969). A controlled clinical trial of a diet high in unsaturated fat in preventing complications of atherosclerosis. Circulation.

Leren, 1970, The oslo diet-heart study. Eleven-Year Report, Circulation, 42, 935, 10.1161/01.CIR.42.5.935

Turpeinen, 1979, Dietary prevention of coronary heart disease: The finnish mental hospital study, Int. J. Epidemiol., 8, 99, 10.1093/ije/8.2.99

Subar, 1992, Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence, Nutr. Cancer, 18, 1, 10.1080/01635589209514201

Grunert, 2014, Sustainability labels on food products: Consumer motivation, understanding and use, Food Policy, 44, 177, 10.1016/j.foodpol.2013.12.001

Newton, 2015, Environmental concern and environmental purchase intentions: The mediating role of learning strategy, J. Bus. Res., 68, 1974, 10.1016/j.jbusres.2015.01.007

Tuomisto, 2011, Environmental impacts of cultured meat production, Environ. Sci. Technol., 45, 6117, 10.1021/es200130u

Poore, 2018, Reducing food’s environmental impacts through producers and consumers, Science, 360, 987, 10.1126/science.aaq0216

Wanhalinna, 2016, Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products, Crit. Rev. Food Sci. Nutr., 56, 339, 10.1080/10408398.2012.761950

Jeske, 2018, Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials, Food Res. Int., 110, 42, 10.1016/j.foodres.2017.03.045

Haas, R., Schnepps, A., Pichler, A., and Meixner, O. (2019). Cow milk versus plant-based milk substitutes: A comparison of product image and motivational structure of consumption. Sustainability, 11.

Arayess, 2018, Alpro’s dairy alternatives: What is allowed and what is not in the light of ECJ’s TofuTown?, Eur. Food Feed L. Rev., 13, 55

Parrish, 2018, Moo-ove over, cow’s milk: The rise of plant-based dairy alternatives the rise of plant-based milks, Pract. Gastroenterol., 171, 20

Vanga, 2018, How well do plant based alternatives fare nutritionally compared to cow’s milk?, J. Food Sci. Technol., 55, 10, 10.1007/s13197-017-2915-y

McCarthy, 2017, Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk, J. Dairy Sci., 100, 1702, 10.3168/jds.2016-11417

Bus, 2003, Consumers’ health perceptions of three types of milk: A survey in Australia, Appetite, 40, 93, 10.1016/S0195-6663(03)00004-7

Harrison, S., Brassard, D., Lemieux, S., and Lamarche, B. (2019). Consumption and sources of saturated fatty acids according to the 2019 canada food guide: Data from the 2015 Canadian Community Health Survey. Nutrients, 11.

Marklund, 2017, Milk fat biomarkers and cardiometabolic disease, Curr. Opin. Lipidol., 28, 46, 10.1097/MOL.0000000000000381

Larsson, 2015, Milk consumption and mortality from all causes, cardiovascular disease, and cancer: A systematic review and meta-analysis, Nutrients, 7, 7749, 10.3390/nu7095363

Zhang, 2016, The importance of animal source foods for nutrient sufficiency in the developing world: The zambia scenario, Food Nutr. Bull., 37, 303, 10.1177/0379572116647823

2016, Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence, Acta Pediatr. Esp., 74, e258

Keller, 2012, Severe malnutrition resulting from use of rice milk in food elimination diets for atopic dermatitis, Isr. Med. Assoc. J., 14, 40

Singhal, S., Baker, R.D., and Baker, S.S. (2017). A comparison of the nutritional value of cow’s milk and nondairy beverages. J. Pediatr. Gastroenterol. Nutr.

Mori, F., Serranti, D., Barni, S., Pucci, N., Rossi, M.E., De Martino, M., and Novembre, E. (2015). A kwashiorkor case due to the use of an exclusive rice milk diet to treat atopic dermatitis. Nutr. J.

Lajolo, 2002, Nutritional significance of lectins and enzyme inhibitors from legumes, J. Agric. Food Chem., 50, 6592, 10.1021/jf020191k

Vanga, S.K., Singh, A., and Raghavan, V. (2018). Changes in soybean trypsin inhibitor by varying pressure and temperature of processing: A molecular modeling study. Innov. Food Sci. Emerg. Technol.

Vagadia, B.H., Vanga, S.K., and Raghavan, V. (2017). Inactivation methods of soybean trypsin inhibitor–A Review. Trends Food Sci. Technol.

Chen, Y., Xu, Z., Zhang, C., Kong, X., and Hua, Y. (2014). Heat-induced inactivation mechanisms of kunitz trypsin inhibitor and bowman-birk inhibitor in soymilk processing. Food Chem.

Stanojevic, S., Barac, M., Pesic, M., and Vucelic-Radovic, B. (2016). The influence of soybean genotypes and htc processing method on trypsin inhibitor activity of soymilk. J. Agric. Sci. Belgrade.

Van der Zanden, L.D.T., van Kleef, E., de Wijk, R.A., and van Trijp, H.C.M. (2014). Knowledge, perceptions and preferences of elderly regarding protein-enriched functional food. Appetite.

Aday, M.S., and Yener, U. (2014). Understanding the buying behaviour of young consumers regarding packaging attributes and labels. Int. J. Consum. Stud.

Reipurth, M.F.S., Hørby, L., Gregersen, C.G., Bonke, A., and Perez Cueto, F.J.A. (2019). Barriers and facilitators towards adopting a more plant-based diet in a sample of danish consumers. Food Qual. Prefer.

Nadathur, S., Wanasundara, J.P.D., and Scanlin, L. (2017). Chapter 7—Hemp seed (Cannabis sativa L.) proteins: Composition, structure, enzymatic modification, and functional or bioactive properties. Sustainable Protein Sources, Academic Press.

Malomo, 2015, Conversion of a low protein hemp seed meal into a functional protein concentrate through enzymatic digestion of fibre coupled with membrane ultrafiltration, Innov. Food Sci. Emerg. Technol., 31, 151, 10.1016/j.ifset.2015.08.004

Kamchan, A., Puwastien, P., Sirichakwal, P.P., and Kongkachuichai, R. (2004). In vitro calcium bioavailability of vegetables, legumes and seeds. J. Food Compos. Anal.

Sá, A.G.A., Moreno, Y.M.F., and Carciofi, B.A.M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol.

Chardigny, J.M., and Walrand, S. (2016). Plant protein for food: Opportunities and bottlenecks. OCL Oilseeds Fats Crop. Lipids.

2013, Digestibility issues of vegetable versus animal proteins: Protein and amino acid requirements-functional aspects, Food Nutr. Bull., 34, 272, 10.1177/156482651303400225

Consultation, 2011, Dietary protein quality evaluation in human nutrition, FAO Food Nutr. Pap., 92, 1

Ciuris, C., Lynch, H.M., Wharton, C., and Johnston, C.S. (2019). A comparison of dietary protein digestibility, based on diaas scoring, in vegetarian and non-vegetarian athletes. Nutrients, 11.

Abelilla, 2018, Digestible indispensable amino acid score (DIAAS) and protein digestibility corrected amino acid score (PDCAAS) in oat protein concentrate measured in 20- to 30-kilogram pigs, J. Sci. Food Agric., 98, 410, 10.1002/jsfa.8457

Joehnke, M.S., Lametsch, R., and Sørensen, J.C. (2019). Improved in vitro digestibility of rapeseed napin proteins in mixtures with bovine beta-lactoglobulin. Food Res. Int.

Joehnke, 2018, In vitro digestibility of rapeseed and bovine whey protein mixtures, J. Agric. Food Chem., 66, 711, 10.1021/acs.jafc.7b04681

National Food Institute, and Danmarks Tekniske Universitet (2019, September 02). Frida Food Data. Available online: http://frida.fooddata.dk.

Vargas-Bello-Pérez, E., Toro-Mujica, P., Enriquez-Hidalgo, D., Fellenberg, M.A., and Gómez-Cortés, P. (2017). Short communication: Discrimination between retail bovine milks with different fat contents using chemometrics and fatty acid profiling. J. Dairy Sci.

Monks, J.L.F., Vanier, N.L., Casaril, J., Berto, R.M., de Oliveira, M., Gomes, C.B., de Carvalho, M.P., Dias, A.R.G., and Elias, M.C. (2013). Effects of milling on proximate composition, folic acid, fatty acids and technological properties of rice. J. Food Compos. Anal.

Orsavova, 2015, Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids, Int. J. Mol. Sci., 12, 12871, 10.3390/ijms160612871

Parker, T.D., Adams, D.A., Zhou, K., Harris, M., and Yu, L. (2003). Fatty acid composition and oxidative stability of cold-pressed edible seed oils. J. Food Sci.

Filho, A.M.M., Pirozi, M.R., Borges, J.T.D.S., Pinheiro Sant’Ana, H.M., Chaves, J.B.P., and Coimbra, J.S.D.R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr.

Zambiazi, 2007, Fatty acid composition of vegetable oils and fats, Bol. Cent. Pesqui. Process. Aliment., 25, 111

Kouřimská, L., Sabolová, M., Horčička, P., Rys, S., and Božik, M. (2018). Lipid content, fatty acid profile, and nutritional value of new oat cultivars. J. Cereal Sci.

Knutsen, 2010, Oats and rye: Production and usage in nordic and baltic countries, Cereal Foods World, 55, 12

Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J., and Micale, F. (2011). Impacts and adaptation of european crop production systems to climate change. Eur. J. Agron.

Maguire, L.S., O’Sullivan, S.M., Galvin, K., O’Connor, T.P., and O’Brien, N.M. (2004). Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia. Nut. Int. J. Food Sci. Nutr.

Ivanov, 2010, Fatty acid composition of various soybean products, Food Feed Res., 37, 65

Bacchetta, L., Aramini, M., Zini, A., Di Giammatteo, V., Spera, D., Drogoudi, P., Rovira, M., Silva, A.P., Solar, A., and Botta, R. (2013). Fatty acids and alpha-tocopherol composition in hazelnut (Corylus avellana L.): A chemometric approach to emphasize the quality of European germplasm. Euphytica.

Dayrit, F.M. (2015). The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc.

Newman, J.C., and Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends Endocrinol. Metab.

Agostoni, C., Moreno, L., and Shamir, R. (2016). Palmitic acid and health: Introduction. Crit. Rev. Food Sci. Nutr.

Mancini, 2015, Biological and nutritional properties of palm oil and palmitic acid: Effects on health, Molecules, 20, 17339, 10.3390/molecules200917339

Vargas-Bello-Pérez, E., and Garnsworthy, P.C. (2013). Trans fatty acids and their role in the milk of dairy cows. Cienc. Investig. Agrar.

Ulbricht, T.L.V., and Southgate, D.A.T. (1991). Coronary heart disease: Seven dietary factors. Lancet.

Chisaguano, A.M., Montes, R., Castellote, A.I., Morales, E., Júlvez, J., Vioque, J., Sunyer, J., and López-Sabater, M.C. (2014). Elaidic, vaccenic, and rumenic acid status during pregnancy: Association with maternal plasmatic LC-Pufas and atopic manifestations in infants. Pediatr. Res.

Pariza, M.W., Park, Y., and Cook, M.E. (2001). The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res.

Zou, X., Jiang, X., Wen, Y., Wu, S., Nadege, K., Ninette, I., Zhang, H., Jin, Q., and Wang, X. (2020). Enzymatic synthesis of structured lipids enriched with conjugated linoleic acid and butyric acid: Strategy consideration and parameter optimization. Bioprocess Biosyst. Eng.

Simopoulos, A.P. (2008). The importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med.

Brenna, J.T., Salem, N., Sinclair, A.J., and Cunnane, S.C. (2009). α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fat. Acids.

Barceló-Coblijn, G., and Murphy, E.J. (2009). Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: Benefits for human health and a role in maintaining tissue n-3 Fatty acid levels. Prog. Lipid Res.

Mathias, R.A., Pani, V., and Chilton, F.H. (2014). Genetic variants in the FADS gene: Implications for dietary recommendations for fatty acid intake. Curr. Nutr. Rep.

European Food Safety Authority (2016). Scientific Opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J., 8, 1–107.

Simopoulos, A.P. (2016). An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8.

Berger, M.E., Smesny, S., Kim, S.W., Davey, C.G., Rice, S., Sarnyai, Z., Schlögelhofer, M., Schäfer, M.R., Berk, M., and McGorry, P.D. (2017). Omega-6 to Omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: A 7-year longitudinal study. Transl. Psychiatry.

Thesing, C.S., Bot, M., Milaneschi, Y., Giltay, E.J., and Penninx, B.W.J.H. (2018). Omega-3 and Omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinology.

Nordic Council of Ministers (2019, July 24). Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity. Available online: http://norden.diva-portal.org/smash/get/diva2:704251/FULLTEXT01.pdf.

Chen, J., and Liu, H. (2020). Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci., 21.

Garaffo, 2011, Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product “Bottarga”, Food Nutr. Sci., 2, 736

Ahrens, 2005, Almond (Prunus Dulcis L.) protein quality, Plant Foods Hum. Nutr., 60, 123, 10.1007/s11130-005-6840-2

Sathe, 1992, Solubilization, electrophoretic characterization and in vitro digestibility of almond (Prunus Amygdalus) proteins, 2, J. Food Biochem., 16, 249, 10.1111/j.1745-4514.1992.tb00450.x

Sze-Tao, K.W.C., and Sathe, S.K. (2000). Functional properties and in vitro digestibility of almond (Prunus Dulcis L.) protein isolate. Food Chem.

Millward, D.J., Layman, D.K., Tomé, D., and Schaafsma, G. (2008). Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr.

Sathe, S.K., Wolf, W.J., Roux, K.H., Teuber, S.S., Venkatachalam, M., and Sze-Tao, K.W.C. (2002). Biochemical characterization of amandin, the major storage protein in almond (Prunus Dulcis L.). J. Agric. Food Chem.

Cowan, J.W., Sabry, Z.I., Rinnu, F.J., and Campbell, J.A. (1963). Evaluation of protein in middle eastern diets. J. Nutr.

House, J.D., Hill, K., Neufeld, J., Franczyk, A., and Nosworthy, M.G. (2019). Determination of the protein quality of Almonds (Prunus Dulcis L.) as assessed by in vitro and in vivo methodologies. Food Sci. Nutr.

Klose, C., and Arendt, E.K. (2012). Proteins in oats; Their synthesis and changes during germination: A review. Crit. Rev. Food Sci. Nutr.

Sgarbieri, 1999, Protein evaluation of four oat (Avena Sativa L.) cultivars adapted for cultivation in the south of Brazil, Plant Foods Hum. Nutr., 53, 297, 10.1023/A:1008032013635

Jiang, Z.Q., Sontag-Strohm, T., Salovaara, H., Sibakov, J., Kanerva, P., and Loponen, J. (2015). Oat protein solubility and emulsion properties improved by enzymatic deamidation. J. Cereal Sci.

Guillamón, E., Pedrosa, M.M., Burbano, C., Cuadrado, C., Sánchez, M.d.C., and Muzquiz, M. (2008). The Trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem.

2015, Isoflavone profile and protein quality during storage of sterilised soymilk treated by ultra high pressure homogenisation, Food Chem., 167, 78, 10.1016/j.foodchem.2014.06.023

Giri, 2012, Processing influences on composition and quality attributes of soymilk and its powder, Food Eng. Rev., 4, 149, 10.1007/s12393-012-9053-0

Munekata, P.E.S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F.J., Mallikarjunan, K., Roohinejad, S., and Lorenzo, J.M. (2020). Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods, 9.

Vagadia, B.H., Vanga, S.K., Singh, A., Gariepy, Y., and Raghavan, V. (2018). Comparison of conventional and microwave treatment on soymilk for inactivation of trypsin inhibitors and in vitro protein digestibility. Foods, 7.

Morency, M.E., Birken, C.S., Lebovic, G., Chen, Y., L’Abbé, M., Lee, G.J., and Maguire, J.L. (2017). Association between noncow milk beverage consumption and childhood height. Am. J. Clin. Nutr.

Boynak, 2019, Approximation of protein quality (DIAAS) of vegetarian dishes served in restaurants, Madr. J. Agric. Environ. Sci., 1, 1

Bonke, A., Sieuwerts, S., and Petersen, I.L. (2020). Amino acid composition of novel plant drinks from oat, lentil and pea. Foods, 9, in press.