Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu hiện trường về cộng đồng vi khuẩn liên quan đến nhựa trong một hồ nước ngọt của Hungary
Tóm tắt
Mặc dù nhựa mang lại nhiều lợi ích to lớn trong nhiều lĩnh vực của cuộc sống, nhưng việc sản xuất và sử dụng nhựa ngày càng tăng đã đưa đến tình trạng rác thải nhựa trở thành một vấn đề môi trường quan trọng. Việc sử dụng và thải bỏ không đúng cách đã dẫn đến sự tích tụ rác thải nhựa trong các môi trường thủy sinh khác nhau. Biofilm vi sinh vật có khả năng phát triển trên bề mặt của nhựa (plastisphere) trong môi trường nước theo thời gian. Mục tiêu của nghiên cứu này là mô tả các cộng đồng vi khuẩn liên quan đến nhựa trong nước ngọt. Vì vậy, trong thử nghiệm đầu tiên, tổng cộng sáu thiết bị thu nhận nhựa tự thiết kế đã được đặt chìm dưới bề mặt nước tại hồ Vácszentlászló, nằm ở trung tâm Hungary, trong thời gian 3 tháng. Hai thiết bị thu nhận nhựa được nuôi cấy hàng tháng. Các cộng đồng vi sinh vật liên quan sau đó được phân tích như sau: (a) các cộng đồng vi khuẩn được nghiên cứu qua giải trình tự amplicon và (b) vi khuẩn có thể nuôi cấy được tách ra từ bề mặt nhựa và được xác định qua giải trình tự gen 16S rRNA. Cùng với các phân tích này về cộng đồng vi khuẩn gắn bó với nhựa, mẫu nước bề mặt từ hồ cũng được lấy, và trong thử nghiệm thứ hai, các vật liệu khác (ví dụ: gỗ, thủy tinh) cũng được điều tra cộng đồng vi khuẩn liên quan bằng các phương pháp tương tự. Giải trình tự amplicon cho thấy sự khác biệt đáng kể giữa các loại vật liệu gắn bó với nhựa và thành phần cộng đồng vi sinh vật có trong nước hồ. Sử dụng môi trường LB agar, không phát hiện thấy loài mới nào; tuy nhiên, đã xác định được một số loài bệnh lý đã biết. Thiết bị thu nhận nhựa tự thiết kế đã được sử dụng thành công trong suốt mùa đông trong khoảng thời gian 3 tháng, cho thấy rằng đây có thể là một phương pháp hợp lý để nghiên cứu vi khuẩn liên quan đến vi nhựa trong thời gian dài và trong các điều kiện môi trường khác nhau.
Từ khóa
#nhựa #cộng đồng vi khuẩn #vi nhựa #nước ngọt #môi trường thủy sinhTài liệu tham khảo
Abell, G. C. J., & Bowman, J. P. (2005). Colonization and community dynamics of class flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean Seawater Q. FEMS Microbiology Ecology, 53, 379–391. https://doi.org/10.1016/j.femsec.2005.01.008
Allgaier, M., Allgaier, M., Grossart, H.-p., & Grossart, H.-p. (2006). Diversity and seasonal dynamics of Actinobacteria populations in four lakes in Northeastern Germany. Microbiology, 72(5), 3489–3497. https://doi.org/10.1128/AEM.72.5.3489
Blettler, M. C. M., Ulla, M. A., Rabuffetti, A. P., & Garello, N. (2017). Plastic pollution in freshwater ecosystems: Macro-, meso-, and microplastic debris in a floodplain lake. Environmental Monitoring and Assessment, 189(11). https://doi.org/10.1007/s10661-017-6305-8
Blettler, M. C. M., Abrial, E., Khan, F. R., Sivri, N., & Espinola, L. A. (2018). Freshwater plastic pollution : Recognizing research biases and identifying knowledge gaps. Water Research, 143, 416–424. https://doi.org/10.1016/j.watres.2018.06.015
Bogialli, S., Di Gregorio, F. N., Lucentini, L., Ferretti, E., Ottaviani, M., Ungaro, N., Abis, P. P., & De Grazia, M. C. (2013). Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: A case study. Environmental Science and Technology, 47(1), 574–583. https://doi.org/10.1021/es302260p
Bryant, J. A., Clemente, T. M., Viviani, D. A., Fong, A. A., Thomas, K. A., Kemp, P., Karl, D. M., White, A. E., & DeLong, E. F. (2016). Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. MSystems, 1(3), e00024–e00016. https://doi.org/10.1128/mSystems.00024-16
Cartraud, A. E., Le Corre, M., Turquet, J., & Tourmetz, J. (2019). Plastic ingestion in seabirds of the Western Indian Ocean. Marine Pollution Bulletin, 140(February), 308–314. https://doi.org/10.1016/j.marpolbul.2019.01.065
Chaudhary, D. K., Kim, D. U., Kim, D., & Kim, J. (2019). Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40667-7
Chen, W.M., Cho, N., Huang, W., Young, C., and Sheu, S.Y.. (2013). “Description of Gemmobacter fontiphilus sp. Nov., isolated from a freshwater spring, reclassification of Catellibacterium nectariphilum as Gemmobacter nectariphilus comb. nov., Catellibacterium changlense as Gemmobacter changlensis comb. nov., Catellibacte.” International Journal of Systematic and Evolutionary Microbiology 63 (Pt_2): 470–78. doi: 10.1099/ijs.0.042051-0.
Churro, C., Azevedo, J., Vasconcelos, V., & Silva, A. (2017). Detection of a Planktothrix agardhii bloom in Portuguese marine coastalwaters. Toxins, 9(12), 1–13. https://doi.org/10.3390/toxins9120391
Dar, G. H., Dar, S. A., Kamili, A. N., Chishti, M. Z., & Ahmad, F. (2016). Microbial pathogenesis detection and characterization of potentially pathogenic Aeromonas sobria isolated from Fi Sh Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae ). Microbial Pathogenesis, 91, 136–140. https://doi.org/10.1016/j.micpath.2015.10.017
DeLong, E., Franks, D., & Alldredge, A. (1993). Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnology and Oceanography, 38(5), 924–934. https://doi.org/10.2307/2838082
Debroas, D., Mone, A., & Ter Halle, A. (2017). Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. Science of the Total Environment, 599–600, 1222–1232. https://doi.org/10.1016/j.scitotenv.2017.05.059
Dudek, K. L., Cruz, B. N., Polidoro, B., & Neuer, S. (2020). Microbial colonization of microplastics in the Caribbean Sea. Limnology and Oceanography Letters, 5(1), 5–17. https://doi.org/10.1002/lol2.10141
Dussud, C., Hudec, C., George, M., Fabre, P., Higgs, P., Bruzaud, S., Delort, A. M., et al. (2018). Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Frontiers in Microbiology, 9, 1–13. https://doi.org/10.3389/fmicb.2018.01571
Eckert, E. M., Di Cesare, A., Kettner, M. T., Arias-Andres, M., Fontaneto, D., Grossart, H. P., & Corno, G. (2018). Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution, 234, 495–502. https://doi.org/10.1016/j.envpol.2017.11.070
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of Chimera detection. Bioinformatics, 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381
Egelkamp, R., Schneider, D., Hertel, R., & Daniel, R. (2017). Nitrile-degrading bacteria isolated from compost. Frontiers in Environmental Science, 5. https://doi.org/10.3389/fenvs.2017.00056
Elifantz, H., Horn, G., Ayon, M., Cohen, Y., & Minz, D. (2013). Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean Coastal Seawater. FEMS Microbiology Ecology, 85(2), 348–357. https://doi.org/10.1111/1574-6941.12122
Franeker, Jan A. Van, and Kara Lavender Law. (2015). Seabirds, gyres and global trends in plastic pollution. Environmental Pollution, 203, 89–96. https://doi.org/10.1016/j.envpol.2015.02.034
Frère, L., Maignien, L., Chalopin, M., Huvet, A., Rinnert, E., Morrison, H., Kerninon, S., et al. (2018). Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environmental Pollution, 242, 614–625. https://doi.org/10.1016/j.envpol.2018.07.023
Da Costa, F., Ana, R., Fedrizzi, T., Lopes, M. L., Pecorari, M., Oliveira, W. L., Costa, D., Giacobazzi, E., Da Costa, J. R., & Bahia, et al. (2015). Characterization of 17 strains belonging to the Mycobacterium simiae complex and description of Mycobacterium paraense sp. nov. International Journal of Systematic and Evolutionary Microbiology, 65(2), 656–662. https://doi.org/10.1099/ijs.0.068395-0
Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: A guide for non-statisticians. International Journal of Endocrinology and Metabolism, 10(2), 486–489. https://doi.org/10.5812/ijem.3505
Gong, M., Yang, G., Zhuang, L., & Zeng, E. Y. (2019). Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms. Environmental Pollution, 252, 94–102. https://doi.org/10.1016/j.envpol.2019.05.090
Harrison, J. P., Hoellein, T. J., Sapp, M., Tagg, A. S., Ju-Nam, Y., & Ojeda, J. J. (2018). Microplastic-associated biofilms: A comparison of freshwater and marine environments. In M. Wagner & S. Lambert (Eds.), Freshwater Microplastics : Emerging Environmental Contaminants? (pp. 181–201). Springer International Publishing. https://doi.org/10.1007/978-3-319-61615-5_9
Hochedez, P., Vignier, N., Barreau, M., Olive, C., Baubion, E., and The, R.. (2013). “Human infection with Shewanella putrefaciens and S. algae: Report of 16 cases in Martinique and review of the literature” 89 (1): 151–56. doi: https://doi.org/10.4269/ajtmh.13-0055.
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586(February), 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science. Vol., 347. https://doi.org/10.1126/science.1260352
Jiang, P., Zhao, S., Zhu, L., & Li, D. (2018). Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Science of the Total Environment, 624, 48–54. https://doi.org/10.1016/j.scitotenv.2017.12.105
Joung, Y., Kim, H., Kang, H., Lee, B. I., Ahn, T. S., & Joh, K. (2014). Lacihabitans soyangensis gen. nov., sp. nov., a new member of the family Cytophagaceae, isolated from a freshwater reservoir. International Journal of Systematic and Evolutionary Microbiology, 64, 3188–3194. https://doi.org/10.1099/ijs.0.058511-0
Kalmbach, S., Szewzyk, U., Manz, W., & Bendinger, B. (2000). In situ probing reveals Aquabacterium commune as a widespread and highly abundant bacterial species in drinking water biofilms. Water Research, 34(2), 575–581. https://doi.org/10.1016/S0043-1354(99)00179-7
Keswani, A., Oliver, D. M., Gutierrez, T., & Quilliam, R. S. (2016). Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Marine Environmental Research, 118, 10–19. https://doi.org/10.1016/j.marenvres.2016.04.006
Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research, 120, 1–8. https://doi.org/10.1016/j.marenvres.2016.07.004
Kirstein, I. V., Wichels, A., Gullans, E., Krohne, G., & Gerdts, G. (2019). The plastisphere – uncovering tightly attached plastic ‘specific’ microorganisms. PLoS ONE, 14(4), 1–17. https://doi.org/10.1371/journal.pone.0215859
Klindworth, A., Quast, C., Pruesse, E., Schweer, T., Horn, M., & Glo, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), 1–11. https://doi.org/10.1093/nar/gks808
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13
Kunin, V., Engelbrektson, A., Ochman, H., & Hugenholtz, P. (2010). Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12(1), 118–123. https://doi.org/10.1111/j.1462-2920.2009.02051.x
Kurmayer, R., Deng, L., & Entfellner, E. (2016). Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous Cyanobacteria planktothrix. Harmful Algae, 54, 69–86. https://doi.org/10.1016/j.hal.2016.01.004
Lavers, J. L., Bond, A. L., & Hutton, I. (2014). Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): Implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environmental Pollution, 187, 124–129. https://doi.org/10.1016/j.envpol.2013.12.020
Lee, J. W., Nam, J. H., Kim, Y. H., Lee, K. H., & Lee, D. H. (2008). Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. Journal of Microbiology, 46(2), 174–182. https://doi.org/10.1007/s12275-008-0032-3
Li, A., Liu, H., Sun, B., Zhou, Y., and Xin, Y.. (2014). “Flavobacterium lacus sp. nov., isolated from a high-altitude lake, and emended description of Flavobacterium filum.” International Journal of Systematic and Evolutionary Microbiology 64 (PART 3): 933–39. doi: 10.1099/ijs.0.056689-0.
Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems : A review on occurrence , environmental effects , and methods for microplastics detection. Water Research, 137, 362–374. https://doi.org/10.1016/j.watres.2017.12.056
Liu, J.J., Zhang, X.Q., Chi, F.T., Pan, J., Sun, C., and Wu, M.. (2014). “Gemmobacter megaterium sp. nov., isolated from coastal planktonic seaweeds.” International Journal of Systematic and Evolutionary Microbiology 64 (PART 1): 66–71. doi: 10.1099/ijs.0.050955-0.
Liu, Y., Li, H., Jiang, J. T., Liu, Y. H., Song, X. F., Xu, C. J., & Liu, Z. P. (2009). Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. International Journal of Systematic and Evolutionary Microbiology, 59(7), 1759–1763. https://doi.org/10.1099/ijs.0.005215-0
Lobelle, D., & Cunliffe, M. (2011). Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62(1), 197–200. https://doi.org/10.1016/j.marpolbul.2010.10.013
Lusher, A. L., McHugh, M., & Thompson, R. C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English channel. Marine Pollution Bulletin, 67(1–2), 94–99. https://doi.org/10.1016/j.marpolbul.2012.11.028
McCormick, A. R., Hoellein, T. J., London, M. G., Hittie, J., Scott, J. W., & Kelly, J. J. (2016). Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere, 7(11). https://doi.org/10.1002/ecs2.1556
Miao, L., Wang, P., Hou, J., Yu, Y., Liu, Z., Liu, S., & Li, T. (2019). Science of the total environment distinct community structure and microbial functions of biofilms colonizing microplastics. Science of the Total Environment, 650, 2395–2402. https://doi.org/10.1016/j.scitotenv.2018.09.378
Nedashkovskaya, O. I., Vancanneyt, M., Van Trappen, S., Vandemeulebroecke, K., Lysenko, A. M., Rohde, M., Falsen, E., Frolova, G. M., Mikhailov, V. V., & Swings, J. (2004). Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. N. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1757–1764. https://doi.org/10.1099/ijs.0.02915-0
Negoro, S. (2000). Biodegradation of nylon oligomers. Applied Microbiology and Biotechnology, 54(4), 461–466. https://doi.org/10.1007/s002530000434
Nelms, S. E., Barnett, J., Brownlow, A., Davison, N. J., Deaville, R., & Galloway, T. S. (2019). Microplastics in marine mammals stranded around the British Coast: Ubiquitous but transitory? Scientific Reports, 1–8. https://doi.org/10.1038/s41598-018-37428-3
Nõges, P., & Ott, I. (2003). Occurrence, coexistence and competition of Limnothrix redekei and Planktothrix agardhii: Analysis of Danish-Estonian Lake Database. Algological Studies/Archiv Für Hydrobiologie, Supplement Volumes, 109(April 2014), 429–441. https://doi.org/10.1127/1864-1318/2003/0109-0429
Oberbeckmann, S., Kreikemeyer, B., Labrenz, M., & Harrison, J. P. (2018). Environmental factors support the formation of specific bacterial assemblages on microplastics. Frontiers in Microbiology, 8(January), 1–12. https://doi.org/10.3389/fmicb.2017.02709
Oberbeckmann, S., Loeder, M. G. J., Gerdts, G., & Osborn, A. M. (2014). Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol, 90, 478–492. https://doi.org/10.1111/1574-6941.12409
Oberbeckmann, S., Mark Osborn, A., & Duhaime, M. B. (2016). Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS ONE, 11(8), 1–24. https://doi.org/10.1371/journal.pone.0159289
Pal, L., Kraigher, B., Brajer-humar, B., Levstek, M., & Mandic-mulec, I. (2012). Bioresource technology total bacterial and ammonia-oxidizer community structure in moving bed biofilm reactors treating municipal wastewater and inorganic synthetic wastewater. Bioresource Technology, 110, 135–143. https://doi.org/10.1016/j.biortech.2012.01.130
Park, S., Park, J. M., & Yoon, J. H. (2017). Algoriphagus Marisflavi sp. nov., isolated from water of an estuary environment. International Journal of Systematic and Evolutionary Microbiology, 67(10), 4168–4174. https://doi.org/10.1099/ijsem.0.002273
Peng, C. C., Binti, F., & Yusuff, M. (2015). Feeding behaviour of tilapia ( Oreochromis sp.) fingerlings to microbeads. Phil. J. of Nat. Sci, 24(March), 21–26.
Peng, G., Zhu, B., Yang, D., Lei, S., Shi, H., & Li, D. (2017). Microplastics in sediments of the Changjiang Estuary , China *. Environmental Pollution, 225, 283–290.
Pesce, A., Toccaceli, G., & Andrea, G. D. (2016). Uncommon strain for an intracranial infection : Bacillus simplex as suspected cause of brain abscess. Journal of Neuroinfectious Diseases, 7(1), 6–8. https://doi.org/10.4172/2314-7326.1000209
Plasticseurope (2019). 2019. “Plastics - the Facts 2019.” https://www.plasticseurope.org/en/resources/market-data.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), 590–596. https://doi.org/10.1093/nar/gks1219
Line, R. and Eva, S.. 2019. “Bacterial candidates for colonization and degradation of marine plastic debris.” Environmental Science & Technology, 11636–43.
Ryan, P. G. (1988). Effects of ingested plastic on seabird feeding: Evidence from chickens. Marine Pollution Bulletin, 19(3), 125–128. https://doi.org/10.1016/0025-326X(88)90708-4
Saber, D. L., & Crawford, R. L. (1985). Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Applied and Environmental Microbiology, 50(6), 1512–1518. https://doi.org/10.1128/aem.50.6.1512-1518.1985
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., & Ryan A. Lesniewski, et al. (2009). Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541. https://doi.org/10.1128/AEM.01541-09
Sudhakar, M., Mukesh, D., Sriyutha Murthy, P., & Venkatesan, R. (2008). Marine microbe-mediated biodegradation of low- and high-density polyethylenes. International Biodeterioration and Biodegradation, 61(3), 203–213. https://doi.org/10.1016/j.ibiod.2007.07.011
Thompson, R. C., Olson, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., & Russell, A. E. (2004). Lost at sea: Where is all the plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559
Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W., & Kämpfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60(1), 249–266. https://doi.org/10.1099/ijs.0.016949-0
Turner, S., Pryer, K. M., Miao, V. P. W., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among Cyanobacteria and plastids by small subunit RRNA sequence analysis. Journal of Eukaryotic Microbiology, 46(4), 327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
Vet, B., Pulawy, I., Kozi, A., & Diseases, F. (2010). Serotyping of Aeromonas species isolated from Polish fish farms in relation to species and virulence phenotype of the bacteria. Bull Vet Inst Pulawy, 81(8), 315–320.
Viršek, M. K., Lovšin, M. N., Koren, Š., Kržan, A., & Peterlin, M. (2017). Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2017.08.024
Wagner, M., Scherer, C., Alvarez-muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., et al. (2014). Microplastics in freshwater ecosystems: What we know and what we need to know. Environmental Sciences Europe, 1–9. https://doi.org/10.1186/s12302-014-0012-7
Wang, L., Tong, J., Li, Y., Zhu, J., Zhang, W., Niu, L., & Zhang, H. (2020). Bacterial and fungal assemblages and functions associated with biofilms differ between diverse types of plastic debris in a freshwater system. Environmental Research, 110371. https://doi.org/10.1016/j.envres.2020.110371
Willame, R., Jurczak, T., Iffly, J. F., Kull, T., Meriluoto, J., & Hoffmann, L. (2005). Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia, 551(1), 99–117. https://doi.org/10.1007/s10750-005-4453-2
Wu, X., Pan, J., Li, M., Li, Y., Bartlam, M., & Wang, Y. (2019). Selective enrichment of bacterial pathogens by microplastic biofilm. Water Research, 165, 114979. https://doi.org/10.1016/j.watres.2019.114979
Yoo, Y., Lee, D. W., Lee, H., Kwon, B. O., Khim, J. S., Yim, U. H., Park, H., et al. (2019). Gemmobacter lutimaris sp. nov., a marine bacterium isolated from a tidal flat. International Journal of Systematic and Evolutionary Microbiology, 69(6), 1676–1681. https://doi.org/10.1099/ijsem.0.003375
Zettler, E. R., Mincer, T. J., & Amaral-zettler, L. A. (2013). Life in the ‘ plastisphere ’: microbial communities on plastic marine debris. Environ. Sci. Technol, 47, 7137–7146. https://doi.org/10.1021/es401288x