Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency
Tóm tắt
Feed costs represent about 70% of the costs of raising broilers. The main way to decrease these costs is to improve feed efficiency by modification of diet formulation, but one other possibility would be to use genetic selection. Understanding the genetic architecture of the gastro-intestinal tract (GIT) and the impact of the selection criterion on the GIT would be of particular interest. We therefore studied the genetic parameters of AMEn (Apparent metabolisable energy corrected for zero nitrogen balance), feed efficiency, and GIT traits in chickens. Genetic parameters were estimated for 630 broiler chickens of the eighth generation of a divergent selection experiment on AMEn. Birds were reared until 23 d of age and fed a wheat-based diet. The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum, jejunum and ileum. The heritability estimates of BW, FCR and AMEn were moderate. The heritability estimates were higher for the GIT characteristics except for the weights of the proventriculus and liver. Gizzard weight was negatively correlated with density (weight to length ratio) of duodenum, jejunum and ileum. Proventriculus and gizzard weights were more strongly correlated with AMEn than with FCR, which was not the case for intestine weight and density. GIT traits were largely dependent on genetics and that selecting on AMEn or FCR would modify them. Phenotypic observations carried out in the divergent lines selected on AMEn were consistent with estimated genetic correlations between AMEn and GIT traits.
Tài liệu tham khảo
Pym RAE: Nutritional Genetics. Poultry Breeding and Genetics. Edited by: Crawford RD. 1990, Amsterdam, The Netherlands, 847-876. Elsevier
Mignon-Grasteau S, Muley N, Bastianelli D, Gomez J, Peron A, Sellier N, Millet N, Besnard J, Hallouis JM, Carré B: Heritability of digestibilities and divergent selection for digestion ability in growing chicks fed a wheat diet. Poult Sci. 2004, 83: 860-867.
de Verdal H, Narcy A, Le Bihan-Duval E, Mignon-Grasteau S: Excretion and gastrointestinal tract development in chickens divergently selected on their capacity of digestion. XIIIth European Poultry Conference: 23-27 August 2010; Tours, France. 2010, 4p-
Rougière N, Gomez J, Mignon-Grasteau S, Carré B: Effects of diet particle size on digestive parameters in D+ and D- genetic chicken lines selected for divergent digestion efficiency. Poult Sci. 2009, 88: 1206-1215. 10.3382/ps.2008-00408.
Rougière N, Carré B: Comparison of gastrointestinal transit times between chickens from D+ and D- genetic lines selected for divergent digestion efficiency. Animal. 2010, 4: 1861-1872. 10.1017/S1751731110001266.
de Verdal H, Mignon-Grasteau S, Jeulin C, Le Bihan-Duval E, Leconte M, Mallet S, Martin C, Narcy A: Digestive tract measurements and histological adaptation in broiler lines divergently selected for digestive efficiency. Poult Sci. 2010, 89: 1955-1961. 10.3382/ps.2010-813.
Aggrey SE, Karnuah AB, Sebastian B, Anthony NB: Genetic properties of feed efficiency parameters in meat-type chickens. Genet Sel Evol. 2010, 42: 1-5. 10.1186/1297-9686-42-1.
Gaya LG, Ferraz JBS, Rezende FM, Mourao GB, Mattos EC, Eler JP, Michelon T: Heritability and genetic correlation estimates for performance and carcass and body composition traits in a male broiler line. Poult Sci. 2006, 85: 837-843.
Rance KA, McEntee GM, McDevitt RM: Genetic and phenotypic relationships between and within support and demand tissues in a single line of broiler chicken. Br Poult Sci. 2002, 43: 518-527. 10.1080/0007166022000004426.
Ledur MC, Melo CMR, Nones K, Zanella EL, Ninov K, Bonassi CA, Jaenisch FRF, Moura ASAMT, Coutinho LL, Schmidt GS: Genetic and phenotypic parameters for organs, body and carcass weights, and haematocrit value, in a broiler × layer cross resource population. 8th World Congress on Genetics Applied to Livestock Production: 13-18 August 2006; Belo Horizonte, MG, Brazil. 2006
Mignon-Grasteau S, Juin H, Sellier N, Bastianelli D, Gomez J, Carré B: Genetic parameters of digestibility of wheat- or corn-based diets in chickens. 9th World Congress on Genetics Applied to Livestock Production: 2-6 August 2010; Leipzig, Germany. 2010, 4p-
Nir I, Hillel R, Shefet G, Nitsan Z: Effect of grain particle size on performance. 2. Grain texture interactions. Poult Sci. 1994, 73: 781-791.
Wu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH: Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. Br Poult Sci. 2004, 45: 385-394. 10.1080/00071660410001730888.
Taylor RD, Jones GPD: The incorporation of whole grain into pelleted broiler chicken diets. II. Gastrointestinal and digesta characteristics. Br Poult Sci. 2004, 45: 237-246. 10.1080/00071660410001715849.
Denbow DM: Gastrointestinal anatomy and physiology. Sturkie's Avian Physiology. Edited by: Whittow GC. 1999, Academic Press, 299-325. Fifth
Gonzalez-Alvarado JM, Jimenez-Moreno E, Valencia DG, Lazaro R, Mateos GG: Effects of fiber source and heat processing of the cereal on the development and pH of the gastrointestinal tract of broilers fed diets based on corn or rice. Poult Sci. 2008, 87: 1779-1795. 10.3382/ps.2008-00070.
Wang JX, Peng KM: Developmental morphology of the small intestine of african ostrich chicks. Poult Sci. 2008, 87: 2629-2635. 10.3382/ps.2008-00163.
Matur E, Ulker C, Arslan M, Elif E, Akyazi I, Evren E: The effects of Enterococcus faecium NCIMB10415 on the development of pancreas and small intestine and on activity of pancreatic digestive enzymes in broiler chickens. Arch Gefluegelkd. 2007, 71: 162-168.
Geyra A, Uni Z, Sklan D: The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. Br J Nutr. 2001, 86: 53-61. 10.1079/BJN2001368.
Péron A, Gomez J, Mignon-Grasteau S, Sellier N, Besnard J, Derouet M, Juin H, Carré B: Effects of wheat quality on digestion differ between the D+ and D-chicken lines selected for divergent digestion capacity. Poult Sci. 2006, 85: 462-469.
McEntee GM, Rance KA, McDevitt RM: Form and function in the broiler chicken: the relationship between gastrointestinal morphological parameters and digestive functional physiology. Br Poult Sci. 2003, 44: S35-S36.
Garcia V, Gomez J, Mignon-Grasteau S, Sellier N, Carre B: Effects of xylanase and antibiotic supplementations on the nutritional utilisation of a wheat diet in growing chicks from genetic D+ and D- lines selected for divergent digestion efficiency. Animal. 2007, 1: 1435-1442.
Hetland H, Svihus B: Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br Poult Sci. 2001, 42: 415-422.
Ravindran V, Wu YB, Thomas DG, Morel PCH: Influence of whole wheat feeding on the development of gastrointestinal tract and performance of broiler chickens. Aust J Agric Res. 2006, 57: 21-26. 10.1071/AR05098.
Duke GE: Alimentary canal: secretions and digestion, special digestion functions and absorption. Avian Physiology. Edited by: Sturkies PD. 1986, New-York, NY, 289-302. Springer-Verlag
Steenfeldt S: The dietary effect of different wheat cultivars for broiler chickens. Br Poult Sci. 2001, 42: 595-609. 10.1080/00071660120088416.
Mitchell MA, Smith MW: The effects of genetic selection for increased growth rate on mucosal and muscle weights in the different regions of the small intestine of the domestic fowl (Gallus domesticus). Comp Biochem Physiol A Comp Physiol. 1991, 99: 251-258. 10.1016/0300-9629(91)90268-H.
Kadhim KK, Zuki ABZ, Noordin MM, Babjee SA, Khamas W: Growth Evaluation of Selected Digestive Organs from Day One to Four Months Post-Hatch in Two Breeds of Chicken Known to Differ Greatly in Growth Rate. J Anim Vet Adv. 2010, 9 (6): 995-1004.
Carré B, Mignon-Grasteau S, Svihus B, Péron A, Bastianelli D, Gomez J, Besnard J, Sellier N: Nutritional effects of feed form, and wheat compared to maize, in the D+ and D- chicken lines selected for divergent digestion capacity. Proceedings of the 15th European Symposium of Poultry Nutrition: 2005; Balatonfüred, Hungary. 2005, 42-44.
Sellier P, Billon Y, Riquet J, Lagant H, Calderon JA, Guillouet P, Bidanel J-P, Noblet J, Gilbert H: Six générations de sélection divergente pour la consummation journalière résiduelle chez le porc en croissance: réponses corrélatives sur les caractères de reproduction des truies et synthèse des réponses sur les caractéristiques de production. 42nd Journées de la Recherche Porcine: 2010; Paris, France. 2010, 167-
Bourdillon A, Carré B, Conan L, Duperray J, Huyghebaert G, Leclercq B, Lessire M, McNab J, Wiseman J: European reference method for the in vivo determination of metabolizable energy with adult cockerels - Reproducibility, effect of food-intake and comparison with individual laboratory methods. Br Poult Sci. 1990, 31: 557-565. 10.1080/00071669008417287.
Bastianelli D, Bonnal L, Juin H, Mignon-Grasteau S, Davrieux F, Carré B: Prediction of the chemical composition of poultry excreta by near infrared spectroscopy. J Near Infra Spe. 2010, 18: 69-77. 10.1255/jnirs.864.
Tixier-Boichard M, Boichard D, Groenveld E, Bordas A: Restricted maximum likelihood estimates of genetic parameters of adult male and female rhode island red chickens divergently selected for residual feed consumption. Poult Sci. 1995, 74: 1245-1252.
SAS Institute: 1999, SAS Institute Inc., Cary, NC
Neumaier A, Groeneveld E: Restricted maximum likelihood of covariances in sparse linear models. Genet Sel Evol. 1998, 30: 13-26.
INRA-AFZ: Tables of composition and nutritional value of feed materials. Edited by: INRA. 2004, Association Française de zootechnie; Paris