Improving predictions of pediatric surgical durations with supervised learning

International Journal of Data Science and Analytics - Tập 4 Số 1 - Trang 35-52 - 2017
Neal Master1, Zhengyuan Zhou1, Delbert C. Miller1, David Scheinker2, Nicholas Bambos3, Peter W. Glynn3
1Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA, 94305, USA
2Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
3Department of Management Sciences and Engineering, Stanford University, Stanford, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

American Society of Anesthesiologists—ASA Physical Status Classification System. https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system . Accessed 06 April 2016

Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

Bland, J., Altman, D., Rohlf, F.: In defence of logarithmic transformations. Stat. Med. 32(21), 3766 (2013)

Bravo, F., Levi, R., Ferrari, L.R., McManus, M.L.: The nature and sources of variability in pediatric surgical case duration. Pediatr. Anesth. 25(10), 999–1006 (2015)

Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24(6), 2350–2383 (1996)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

Bridges, M., Diamond, D.L.: The financial impact of teaching surgical residents in the operating room. Am. J. Surg. 177(1), 28–32 (1999)

Byrne, T.K.: Complications of surgery for obesity. Surg. Clin. N. Am. 81(5), 1181–1193 (2001)

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

Dexter, F., Blake, J.T., Penning, D.H., Lubarsky, D.A.: Calculating a potential increase in hospital margin for elective surgery by changing operating room time allocations or increasing nursing staffing to permit completion of more cases: a case study. Anesth. Analg. 94(1), 138–142 (2002)

Dexter, F., Marcon, E., Epstein, R.H., Ledolter, J.: Validation of statistical methods to compare cancellation rates on the day of surgery. Anesth. Analg. 101(2), 465–473 (2005)

Ebbeling, C.B., Pawlak, D.B., Ludwig, D.S.: Childhood obesity: public-health crisis, common sense cure. Lancet 360(9331), 473–482 (2002)

Feng, C., Wang, H., Lu, N., Tu, X.M.: Log transformation: application and interpretation in biomedical research. Stat. Med. 32(2), 230–239 (2013)

Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

Kayış, E., Khaniyev, T.T., Suermondt, J., Sylvester, K.: A robust estimation model for surgery durations with temporal, operational, and surgery team effects. Health Care Manag. Sci. 18(3), 222–233 (2015)

Kulis, B.: Metric learning: a survey. Found. Trends Mach. Learn. 5(4), 287–364 (2012)

Macario, A.: What does one minute of operating room time cost? J. Clin. Anesth. 22(4), 233–236 (2010)

Macario, A., Dexter, F., Traub, R.D.: Hospital profitability per hour of operating room time can vary among surgeons. Anesth. Analg. 93(3), 669–675 (2001)

Marakas, G.M.: Decision Support Systems in the 21st Century, vol. 134. Prentice Hall, Upper Saddle River (2003)

Master, N., Scheinker, D., Bambos, N.: Predicting pediatric surgical durations. arXiv preprint arXiv: 1605.04574 (2016)

May, J.H., Strum, D.P., Vargas, L.G.: Fitting the lognormal distribution to surgical procedure times. Decis. Sci. 31(1), 129–148 (2000)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

Powell, C.: The delphi technique: myths and realities. J. Adv. Nurs. 41(4), 376–382 (2003)

Rudin, W.: Principles of mathematical analysis Vol. 3. New York, McGraw-Hill (1964)

Shippert, F.R.D.: A study of time-dependent operating room fees and how to save $100000 by using time-saving products. Am. J. Cosmet. Surg. 22(1), 25–34 (2005)

Smallman, B., Dexter, F.: Optimizing the arrival, waiting, and npo times of children on the day of pediatric endoscopy procedures. Anesth. Analg. 110(3), 879–887 (2010)

Spangler, W.E., Strum, D.P., Vargas, L.G., May, J.H.: Estimating procedure times for surgeries by determining location parameters for the lognormal model. Health Care Manag. Sci. 7(2), 97–104 (2004)

Stepaniak, P.S., Heij, C., De Vries, G.: Modeling and prediction of surgical procedure times. Stat. Neerl. 64(1), 1–18 (2010)

Strum, D.P., May, J.H., Vargas, L.G.: Modeling the uncertainty of surgical procedure times: comparison of log-normal and normal models. J. Am. Soc. Anesthesiol. 92(4), 1160–1167 (2000)

Strum, D.P., Sampson, A.R., May, J.H., Vargas, L.G.: Surgeon and type of anesthesia predict variability in surgical procedure times. J. Am. Soc. Anesthesiol. 92(5), 1454–1466 (2000)

Vinden, C., Malthaner, R., McGee, J., McClure, J., Winick-Ng, J., Liu, K., Nash, D., Welk, B., Dubois, L.: Teaching surgery takes time: the impact of surgical education on time in the operating room. Can. J. Surg. 59(2), 87 (2016)

Weinberger, K.Q., Tesauro, G.: Metric learning for kernel regression. In: AISTATS, pp. 612–619 (2007)

Wright, I.H., Kooperberg, C., Bonar, B.A., Bashein, G.: Statistical modeling to predict elective surgery timecomparison with a computer scheduling system and surgeon-provided estimates. J. Am. Soc. Anesthesiol. 85(6), 1235–1245 (1996)

Zenteno, A.C., Carnes, T., Levi, R., Daily, B.J., Price, D., Moss, S.C., Dunn, P.F.: Pooled open blocks shorten wait times for nonelective surgical cases. Ann. Surg. 262(1), 60–67 (2015)

Zhou, Z., Miller, D., Master, N., Scheinker, D., Bambos, N., Glynn, P.: Detecting inaccurate predictions of pediatric surgical durations. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA) (2016)