Improving l-serine formation by Escherichia coli by reduced uptake of produced l-serine

Microbial Cell Factories - Tập 19 Số 1 - 2020
Chenyang Wang1, Junjun Wu2, Shi Binchao1, Jiping Shi1, Zhiyang Zhao3
1Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
2College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
3University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China

Tóm tắt

Abstract Background Microbial de novo production of l-serine, which is widely used in a range of cosmetic and pharmaceutical products, has attracted increasing attention due to its environmentally friendly characteristics. Previous pioneering work mainly focused on l-serine anabolism; however, in this study, it was found that l-serine could be reimported through the l-serine uptake system, thus hampering l-serine production. Result To address this challenge, engineering via deletion of four genes, namely, sdaC, cycA, sstT and tdcC, which have been reported to be involved in l-serine uptake in Escherichia coli, was first carried out in the l-serine producer E. coli ES. Additionally, the effects of these genes on l-serine uptake activity and l-serine production were investigated. The data revealed an abnormal phenomenon regarding serine uptake activity. The serine uptake activity of the ΔsdaC mutant was 0.798 nmol min−1 (mg dry weight) −1 after 30 min, decreasing by 23.34% compared to that of the control strain. However, the serine uptake activity of the single sstT, cycA and tdcC mutants increased by 34.29%, 78.29% and 48.03%, respectively, compared to that of the control strain. This finding may be the result of the increased level of sdaC expression in these mutants. In addition, multigene-deletion strains were constructed based on an sdaC knockout mutant. The ΔsdaCΔsstTΔtdcC mutant strain exhibited 0.253 nmol min−1 (mg dry weight) −1l-serine uptake activity and the highest production titer of 445 mg/L in shake flask fermentation, which was more than three-fold the 129 mg/L production observed for the parent. Furthermore, the ΔsdaCΔsstTΔtdcC mutant accumulated 34.8 g/L l-serine with a yield of 32% from glucose in a 5-L fermenter after 36 h. Conclusion The results indicated that reuptake of l-serine impairs its production and that an engineered cell with reduced uptake can address this problem and improve the production of l-serine in E. coli.

Từ khóa


Tài liệu tham khảo

Eggeling L. l-Serine and glycine. In: Wendisch VF, editor. Amino acid biosynthesis~pathways, regulation and metabolic engineering, vol. 5. Springer: Berlin; 2007. p. 259–72 (Steinbüchel L (Series Editor): Microbiology Monographs).

Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Curr Opin Biotechnol. 2012;23:718–26.

Zhang X, Xu G, Shi J, Koffas MAG, Xu Z. Microbial production of l-serine from renewable feedstocks. Trends Biotechnol. 2018;36:700–12.

Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L. Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol. 2005;71:7139–44.

Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L. Reduced folate supply as a key to enhanced l-serine production by Corynebacterium glutamicum. Appl Environ Microbiol. 2007;73:750–5.

Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z. l-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99:1665–73.

Lai S, Zhang Y, Liu S, Liang Y, Shang X, Chai X, Wen T. Metabolic engineering and flux analysis of Corynebacterium glutamicum for l-serine production. Sci China Life Sci. 2012;55:283–90.

Li Y, Chen GK, Tong XW, Zhang HT, Liu XG, Liu YH, Lu FP. Construction of Escherichia coli strains producing l-serine from glucose. Biotechnol Lett. 2012;34:1525–30.

Zhang Y, Kang P, Liu S, Zhao Y, Wang Z, Chen T. glyA gene knock-out in Escherichia coli enhances l-serine production without glycine addition. Biotechnol Bioprocess Eng. 2017;22:390–6.

Gu P, Yang F, Su T, Li F, Li Y, Qi Q. Construction of an l-serine producing Escherichia coli via metabolic engineering. J Ind Microbiol Biotechnol. 2014;41:1443–50.

Mundhada H, Schneider K, Christensen HB, Nielsen AT. Engineering of high yield production of l-serine in Escherichia Coli. Biotechnol Bioeng. 2016;113:807–16.

Mundhada H, Seoane JM, Schneider K, Koza A, Christensen HB, Klein T, Phaneuf PV, Herrgard M, Feist AM, Nielsen AT. Increased production of l-serine in Escherichia coli through adaptive laboratory evolution. Metab Eng. 2017;39:141–50.

Zhijun Z, Sheng C, Dan W, Jing W, Jian C. Effect of gene knockouts of l-tryptophan uptake system on the production of l-tryptophan in Escherichia coli. Process Biochem. 2012;47:340–4.

Kruse DSS, Krämer R, Burkovski A. Analysis of threonine uptake in Escherichia coli threonine production strains. Biotechnol Lett. 2001;23:401–4.

Zhao Z, Ding JY, Ma WH, Zhou NY, Liu SJ. Identification and characterization of gamma-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum. Appl Environ Microbiol. 2012;78:2596–601.

ZhongQi SHAO RTLaEBN. Sequencing and characterization of the sdaC gene and identification of the sdaCB operon in Escherichia coli K12. Eur J Biochem. 1994;222:901–7.

Ogawa WKT, Tsuda M, Mizushima T, Tsuchiya T. Isolation and characterization of an Escherichia coli mutant lacking the major serine transporter_ and cloning of a serine transporter gene. Biochem J. 1997;122:1241–5.

Wargel RJ, Shadur CA, Neuhaus FC. Mechanism of d-cycloserine action: transport systems for d-alanine, d-cycloserine, l-alanine, and glycinel. J Bacteriol. 1970;103:778–88.

Robbins JC, Oxender DL. Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J Bacteriol. 1973;116:12.

Schneider F, Kramer R, Burkovski A. Identification and characterization of the main beta-alanine uptake system in Escherichia coli. Appl Microbiol Biotechnol. 2004;65:576–82.

Kim YM, Ogawa W, Tamai E, Kuroda T, Mizushima T, Tsuchiya T. Purification, reconstitution, and characterization of NaVSerine symporter, SstT, of Escherichia coli. J Biochem. 2002;132:71–6.

Goss TJ, Schweizer HP, Datta PR. Molecular characterization of the tdc operon of Escherichia coli K-12. J Bacteriol. 1988;170:5352–9.

Ganduri YL, Sadda SR, Datta MW, Jambukeswaran RK, Datta P. TdcA, a transcriptional activator of the tdcABC operon of Escherichia coil, is a member of the LysR family of proteins. Mol Gen Gene. 1993;240:395–402.

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2006(2):0008.

Wang J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis. 2001;13:983–8.

Chen Q, Wang Q, Wei G, Liang Q, Qi Q. Production in Escherichia coli of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Environ Microbiol. 2011;77:4886–93.

Shang L, Fan CS, Jin RL, Liu DX, Wang JG, Yin J, Song DX. Knockout of tyrR gene in Escherichia coli and its effects on the phenylalanine biosynthesis. Acta Biochim Biophys Sin. 2003;35:728–33.

Wang JG, Fan CS, Wu YQ, Jin RL, Liu DX, Shang L, Jiang PH. Regulation of aroP expression by tyrR gene in Escherichia coli. Acta Biochim Biophys Sin. 2003;35:993–7.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.