Improvements of 6S Look-Up-Table Based Surface Reflectance Employing Minimum Curvature Surface Method
Tóm tắt
Tài liệu tham khảo
Adler-Golden S.M., Matthew M.W., Bernstein L.S., Levine R.Y., Berk A., Richtsmeier S.C., Acharya P.K., Anderson G.P., Felde J.W., Gardner J., Hokeb M., Jeongb L.S., Pukallb B., Mellob J., Ratkowskib A., Burke H.-H.: Atmospheric correction for shortwave spectral imagery based on modtran4. Proc. SPIE 3753, Imaging Spectrometry V, 61–69 (1999). https://doi.org/10.1117/12.366315
Choi, Y.Y., Suh, M.S.: Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm. Remote Sens. 10, 2013 (2018). https://doi.org/10.3390/rs10122013
Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S.: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sust. Energ. Rev. 56, 246–260 (2016). https://doi.org/10.1016/j.rser.2015.11.058
Dietz, A., Klein, I., Gessner, U., Frey, C., Kuenzer, C., Dech, S.: Detection of water bodies from AVHRR data—a TIMELINE thematic processor. Remote Sens. 9, 57 (2017). https://doi.org/10.3390/rs9010057
Dorji, P., Fearns, P.: Atmospheric correction of geostationary Himawari-8 satellite data for total suspended sediment mapping: a case study in the coastal waters of Western Australia. ISPRS J. Photogramm. Remote Sens. 144, 81–93 (2018). https://doi.org/10.1016/j.isprsjprs.2018.06.019
Franch, B., Roger J.C., Vermote E.F.: Suomi-NPP VIIRS Surface Reflectance Algorithm Theoretical Basis Document (ATBD). Available at https://viirsland.gsfc.nasa.gov/PDF/ATBD_VIIRS_SR_v2.pdf. Accessed 10 October 2016
Fraser, R.S., Ferrare, R.A., Kaufman, Y.J., Markham, B.L., Mattoo, S.: Algorithm for atmospheric corrections of aircraft and satellite imagery. Int. J. Remote Sens. 13, 541–557 (1992). https://doi.org/10.1080/01431169208904056
Gittings, J.A., Raitsos, D.E., Racault, M.F., Brewin, R.J., Pradhan, Y., Sathyendranath, S., Platt, T.: Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sens. Environ. 189, 56–66 (2017). https://doi.org/10.1016/j.rse.2016.10.043
Grgić, M., Varga, M., Bašić, T.: Empirical research of interpolation methods in distortion modeling for the coordinate transformation between local and global geodetic datums. J. Surv. Eng. 142, 05015004 (2015). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000154
Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., Clayton, C.R.I.: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10, 89–95 (2010). https://doi.org/10.5194/nhess-10-89-2010
Jiménez-Muñoz, J.C., Sobrino, J.A., Mattar, C., Franch, B.: Atmospheric correction of optical imagery from MODIS and reanalysis atmospheric products. Remote Sens. Environ. 114, 2195–2210 (2010). https://doi.org/10.1016/j.rse.2010.04.022
Kotchenova, S.Y., Vermote, E.F., Matarrese, R., Klemm Jr., F.J.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 45(26), 6762–6774 (2006). https://doi.org/10.1364/AO.45.006762
Kotchenova, S.Y., Vermote, E.F., Levy, R., Lyapustin, A.: Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Appl. Opt. 47, 2215–2226 (2008). https://doi.org/10.1364/AO.47.002215
Liang, S., Fang, H., Chen, M.: Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Trans. Geosci. Remote Sens. 39, 2490–2498 (2001). https://doi.org/10.1109/36.964986
Liang, S., Wang D., He T.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Surface Albedo. NOAA NESDIS CENTER for SATELLITE APPLICATIONS and REARCH, version 1.0 (2010)
Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., Korkin, S.: Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 116(D03210), (2011). https://doi.org/10.1029/2010JD014986
Meyer, K., Platnick, S., Arnold, G.T., Holz, R.E., Veglio, P., Yorks, J., Wang, C.: Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 μm water vapor absorption band. Atmos. Meas. Tech. 9, 1743 (2016). https://doi.org/10.5194/amt-9-1743-2016
Nefeslioglu, H.A., San, B.T., Gokceoglu, C., Duman, T.Y.: An assessment on the use of Terra ASTER L3A data in landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 14, 40–60 (2012). https://doi.org/10.1016/j.jag.2011.08.005
NMSC: GK-2A AMI Algorithm Theoretical Basis Document. Available at http://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a. Accessed 15 April 2019
Nunes, A.S.L., Marcal, A.R.S., Vaughan, R.A.: Fast over-land atmospheric correction of visible and near-infrared satellite images. Int. J. Remote Sens. 29, 3523–3531 (2008). https://doi.org/10.1080/01431160701592445
Proud, S.R., Rasmussen, M.O., Fensholt, R., Sandholt, I., Shisanya, C., Mutero, W., Mbow, C., Anyamba, A.: Improving the SMAC atmospheric correction code by analysis of Meteosat second generation NDVI and surface reflectance data. Remote Sens. Environ. 114, 1687–1698 (2010). https://doi.org/10.1016/j.rse.2010.02.020
Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., Liu, S.: Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 52, 907–919 (2014). https://doi.org/10.1109/TGRS.2013.2245670
Smith, W.H.F., Wessel, P.: Gridding with continuous curvature splines in tension. Geophysics. 55, 293–305 (1990). https://doi.org/10.1190/1.1442837
Vermote, E. F., Tanré D., Deuzé J. L., Herman M., Morcrette J. J., Kotchenova S. Y.: Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3, 1–55 (2006)
Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005). https://doi.org/10.3354/cr030079
Wu, X., Wen, J., Xiao, Q., Yu, Y., You, D., Hueni, A.: Assessment of NPP VIIRS albedo over heterogeneous crop land in northern China. J. Geophys. Res. Atmos. 122, 13138–13154 (2017). https://doi.org/10.1002/2017JD027262
Yeom, J.M., Ko, J., Hwang, J., Lee, C.S., Choi, C.U., Jeong, S.: Updating absolute radiometric characteristics for KOMPSAT-3 and KOMPSAT-3A multispectral imaging sensors using well-characterized pseudo-invariant tarps and microtops II. Remote Sens. 10, 697 (2018). https://doi.org/10.3390/rs10050697
Yumimoto, K., Nagao, T.M., Kikuchi, M., Sekiyama, T.T., Murakami, H., Tanaka, T.Y., Ogi, A., Irie, H., Kharti, P., Okumura, H., Arai, K., Morino, I., Uchino, O., Maki, T.: Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 43, 5886–5894 (2016). https://doi.org/10.1002/2016GL069298
Zhang, H., Kondragunta, S., Laszlo, I., Liu, H., Remer, L.A., Huang, J., Superczynski, S., Ciren, P.: An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database. J. Geophys. Res. Atmos. 121, 10–717 (2016). https://doi.org/10.1002/2016JD024859
Zhao, W., Tamura, M., Takahashi, H.: Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. Remote Sens. Environ. 76, 202–212 (2001). https://doi.org/10.1016/S0034-4257(00)00204-2