Improvements of 6S Look-Up-Table Based Surface Reflectance Employing Minimum Curvature Surface Method

Springer Science and Business Media LLC - Tập 56 - Trang 235-248 - 2020
Kyeong-Sang Lee1, Chang Suk Lee2, Minji Seo1, Sungwon Choi1, Noh-Hun Seong1, Donghyun Jin1, Jong-Min Yeom3, Kyung-Soo Han1,4
1Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, Busan, South Korea
2Environmental Satellite Center, National Institute of Environmental Research, Incheon, South Korea
3Korea Aerospace Research Institute (KARI), Daejeon, South Korea
4Department of Spatial Information Engineering, Pukyong National University, Busan, South Korea

Tóm tắt

We propose a methodology employing an interpolation technique on the Second Simulation of a Satellite Signal (6S) look-up table (LUT) to improve surface reflectance retrieval using Himawari-8/Advanced Himawari Imager (AHI). A minimum curvature surface (MCS) technique was used to refine the 6S LUT, and the solar zenith angle (SZA) and viewing zenith angle (VZA) increments were narrowed by 0.5°. The interpolation processing time was relatively short, about 3172 s per channel, and the interpolated xa and xb were well represented by the changes in SZA and VZA. An evaluation of the interpolated xa and xb for six cases revealed a relative mean absolute error of less than 5% for all channels and cases; however, a slight difference was evident for higher values of SZA and VZA. To evaluate the surface reflectance, we compared the surface reflectance derived using 6S LUT with that calculated using 6S only. Application of the interpolated 6S LUT showed a lower relative root mean square error (RRMSE) of 0.65% to 9.29% for all channels, than before interpolation. The improvement in surface reflectance measurements increased with the SZA. For a SZA above 75°, the RRMSE improved significantly for all channels (by 11.33–45.1%). In addition, when the MCS method was applied, the surface reflectance measurements improved without spatial discontinuity and showed good agreement with 6S results in a linear profile analyses. Thus, the method proposed can improve LUT based surface reflectance measurements in less time and increase the availability of surface reflectance data based on geostationary satellites.

Tài liệu tham khảo

Adler-Golden S.M., Matthew M.W., Bernstein L.S., Levine R.Y., Berk A., Richtsmeier S.C., Acharya P.K., Anderson G.P., Felde J.W., Gardner J., Hokeb M., Jeongb L.S., Pukallb B., Mellob J., Ratkowskib A., Burke H.-H.: Atmospheric correction for shortwave spectral imagery based on modtran4. Proc. SPIE 3753, Imaging Spectrometry V, 61–69 (1999). https://doi.org/10.1117/12.366315

Choi, Y.Y., Suh, M.S.: Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm. Remote Sens. 10, 2013 (2018). https://doi.org/10.3390/rs10122013

Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S.: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sust. Energ. Rev. 56, 246–260 (2016). https://doi.org/10.1016/j.rser.2015.11.058

Dietz, A., Klein, I., Gessner, U., Frey, C., Kuenzer, C., Dech, S.: Detection of water bodies from AVHRR data—a TIMELINE thematic processor. Remote Sens. 9, 57 (2017). https://doi.org/10.3390/rs9010057

Dorji, P., Fearns, P.: Atmospheric correction of geostationary Himawari-8 satellite data for total suspended sediment mapping: a case study in the coastal waters of Western Australia. ISPRS J. Photogramm. Remote Sens. 144, 81–93 (2018). https://doi.org/10.1016/j.isprsjprs.2018.06.019

Franch, B., Roger J.C., Vermote E.F.: Suomi-NPP VIIRS Surface Reflectance Algorithm Theoretical Basis Document (ATBD). Available at https://viirsland.gsfc.nasa.gov/PDF/ATBD_VIIRS_SR_v2.pdf. Accessed 10 October 2016

Fraser, R.S., Ferrare, R.A., Kaufman, Y.J., Markham, B.L., Mattoo, S.: Algorithm for atmospheric corrections of aircraft and satellite imagery. Int. J. Remote Sens. 13, 541–557 (1992). https://doi.org/10.1080/01431169208904056

Gittings, J.A., Raitsos, D.E., Racault, M.F., Brewin, R.J., Pradhan, Y., Sathyendranath, S., Platt, T.: Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sens. Environ. 189, 56–66 (2017). https://doi.org/10.1016/j.rse.2016.10.043

Grgić, M., Varga, M., Bašić, T.: Empirical research of interpolation methods in distortion modeling for the coordinate transformation between local and global geodetic datums. J. Surv. Eng. 142, 05015004 (2015). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000154

Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., Clayton, C.R.I.: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10, 89–95 (2010). https://doi.org/10.5194/nhess-10-89-2010

Jiménez-Muñoz, J.C., Sobrino, J.A., Mattar, C., Franch, B.: Atmospheric correction of optical imagery from MODIS and reanalysis atmospheric products. Remote Sens. Environ. 114, 2195–2210 (2010). https://doi.org/10.1016/j.rse.2010.04.022

Kotchenova, S.Y., Vermote, E.F., Matarrese, R., Klemm Jr., F.J.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 45(26), 6762–6774 (2006). https://doi.org/10.1364/AO.45.006762

Kotchenova, S.Y., Vermote, E.F., Levy, R., Lyapustin, A.: Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Appl. Opt. 47, 2215–2226 (2008). https://doi.org/10.1364/AO.47.002215

Liang, S., Fang, H., Chen, M.: Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Trans. Geosci. Remote Sens. 39, 2490–2498 (2001). https://doi.org/10.1109/36.964986

Liang, S., Wang D., He T.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Surface Albedo. NOAA NESDIS CENTER for SATELLITE APPLICATIONS and REARCH, version 1.0 (2010)

Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., Korkin, S.: Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 116(D03210), (2011). https://doi.org/10.1029/2010JD014986

Meyer, K., Platnick, S., Arnold, G.T., Holz, R.E., Veglio, P., Yorks, J., Wang, C.: Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 μm water vapor absorption band. Atmos. Meas. Tech. 9, 1743 (2016). https://doi.org/10.5194/amt-9-1743-2016

Nefeslioglu, H.A., San, B.T., Gokceoglu, C., Duman, T.Y.: An assessment on the use of Terra ASTER L3A data in landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 14, 40–60 (2012). https://doi.org/10.1016/j.jag.2011.08.005

NMSC: GK-2A AMI Algorithm Theoretical Basis Document. Available at http://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a. Accessed 15 April 2019

Nunes, A.S.L., Marcal, A.R.S., Vaughan, R.A.: Fast over-land atmospheric correction of visible and near-infrared satellite images. Int. J. Remote Sens. 29, 3523–3531 (2008). https://doi.org/10.1080/01431160701592445

Proud, S.R., Rasmussen, M.O., Fensholt, R., Sandholt, I., Shisanya, C., Mutero, W., Mbow, C., Anyamba, A.: Improving the SMAC atmospheric correction code by analysis of Meteosat second generation NDVI and surface reflectance data. Remote Sens. Environ. 114, 1687–1698 (2010). https://doi.org/10.1016/j.rse.2010.02.020

Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., Liu, S.: Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 52, 907–919 (2014). https://doi.org/10.1109/TGRS.2013.2245670

Smith, W.H.F., Wessel, P.: Gridding with continuous curvature splines in tension. Geophysics. 55, 293–305 (1990). https://doi.org/10.1190/1.1442837

Vermote, E. F., Tanré D., Deuzé J. L., Herman M., Morcrette J. J., Kotchenova S. Y.: Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3, 1–55 (2006)

Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005). https://doi.org/10.3354/cr030079

Wu, X., Wen, J., Xiao, Q., Yu, Y., You, D., Hueni, A.: Assessment of NPP VIIRS albedo over heterogeneous crop land in northern China. J. Geophys. Res. Atmos. 122, 13138–13154 (2017). https://doi.org/10.1002/2017JD027262

Yeom, J.M., Ko, J., Hwang, J., Lee, C.S., Choi, C.U., Jeong, S.: Updating absolute radiometric characteristics for KOMPSAT-3 and KOMPSAT-3A multispectral imaging sensors using well-characterized pseudo-invariant tarps and microtops II. Remote Sens. 10, 697 (2018). https://doi.org/10.3390/rs10050697

Yumimoto, K., Nagao, T.M., Kikuchi, M., Sekiyama, T.T., Murakami, H., Tanaka, T.Y., Ogi, A., Irie, H., Kharti, P., Okumura, H., Arai, K., Morino, I., Uchino, O., Maki, T.: Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 43, 5886–5894 (2016). https://doi.org/10.1002/2016GL069298

Zhang, H., Kondragunta, S., Laszlo, I., Liu, H., Remer, L.A., Huang, J., Superczynski, S., Ciren, P.: An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database. J. Geophys. Res. Atmos. 121, 10–717 (2016). https://doi.org/10.1002/2016JD024859

Zhao, W., Tamura, M., Takahashi, H.: Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. Remote Sens. Environ. 76, 202–212 (2001). https://doi.org/10.1016/S0034-4257(00)00204-2

Zhou, J., Wang, J., Li, J., Hu, D.: Atmospheric correction of PROBA/CHRIS data in an urban environment. Int. J. Remote Sens. 32(9), 2591–2604 (2011). https://doi.org/10.1080/01431161003698443