Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects

Springer Science and Business Media LLC - Tập 57 - Trang 2927-2936 - 2017
Nittaya Marungruang1, Juscelino Tovar1, Inger Björck1,2, Frida Fåk Hållenius1
1Department of Food Technology, Engineering and Nutrition, Lund University, Kemicentrum, Lund, Sweden
2InnovaFood AB, Flyinge, Sweden

Tóm tắt

A multifunctional diet (MFD) targeting subclinical inflammation was developed as a tool to decrease risk factors for cardiometabolic disease in healthy “at-risk” individuals (BMI 25–33 kg/m2). MFD contains several components that are degraded in the colon by the microbiota, such as dietary fibers from rye, barley, oats and berries. It also contains soy beans, oily fish and plant stanols. In previous studies, we have observed improved cardiometabolic markers in healthy at-risk individuals after 4–8 week intake of MFD. However, whether these improvements can be associated with changes in the gut microbiota composition has not been investigated. In the present study, we analyzed the gut microbiota before and after an 8-week dietary intervention with MFD. Cardiometabolic at-risk individuals (n = 47), between 51 and 72 years old and with a BMI of 25–33 kg/m2, were given either the MFD or a control diet lacking the functional (“active”) components for 8 weeks in a parallel, randomized design. Next-generation sequencing of bacterial 16S rRNA genes was used to analyze the gut microbiota composition. The 8-week intervention with MFD did not significantly alter the gut microbiota composition at phylum or genus taxonomic levels, while LEfSE analysis identified increased abundance of Prevotella copri in the MFD group as compared to the control group. Treponema correlated positively with blood pressure. In contrast, Faecalibacterium showed a negative association with blood pressure, while Bilophila appeared to associate with a negative blood lipid profile. Taken together, results from the present study may be used in the further development of effective dietary concepts capable of reducing cardiometabolic risk markers in humans through a targeted modulation of the gut microbial community. Clinical Trials.gov NCT02148653.

Tài liệu tham khảo

Bäckhed F, Ding H, Wang T, Hooper L, Koh G, Nagy A, Semenkovich C, Gordon J (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723 Ley R, Turnbaugh P, Klein S, Gordon J (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023 Cani P, Bibiloni R, Knauf C, Waget A, Nevrinck A, Delzenne N, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481 Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM (2016) Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct 7(4):1788–1796. doi:10.1039/c5fo01096a Selma MV, Gonzalez-Sarrias A, Salas-Salvado J, Andres-Lacueva C, Alasalvar C, Orem A, Tomas-Barberan FA, Espin JC (2017) The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome. Clin Nutr. doi:10.1016/j.clnu.2017.03.012 Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, Teeling JL, Blaak EE, Fenech M, Vauzour D, McArdle HJ, Kremer BH, Sterkman L, Vafeiadou K, Benedetti MM, Williams CM, Calder PC (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114(7):999–1012. doi:10.1017/s0007114515002093 Tovar J, Nilsson A, Johansson M, Ekesbo R, Aberg AM, Johansson U, Bjorck I (2012) A diet based on multiple functional concepts improves cardiometabolic risk parameters in healthy subjects. Nutr Metabol 9:29. doi:10.1186/1743-7075-9-29 Tovar J, Johansson M, Bjorck I (2016) A multifunctional diet improves cardiometabolic-related biomarkers independently of weight changes: an 8-week randomized controlled intervention in healthy overweight and obese subjects. Eur J Nutr 55(7):2295–2306. doi:10.1007/s00394-015-1039-2 Tovar J, de Mello VD, Nilsson A, Johansson M, Paananen J, Lehtonen M, Hanhineva K, Bjorck I (2017) Reduction in cardiometabolic risk factors by a multifunctional diet is mediated via several branches of metabolism as evidenced by nontargeted metabolite profiling approach. Mol Nutr Food Res. doi:10.1002/mnfr.201600552 Nordic Council of Ministers (2014) Nutrition recommendations 2012: integrating nutrition and physical activity. Nordic Council of Ministers, Copenhagen Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, Fierer N, Peña A, Goodrich J, Gordon J, Huttley G, Kelley S, Knights D, Koenig J, Ley R, Lozupone C, McDonald D, Muegge B, Pirrung M, Reeder J, Sevinsky J, Turnbaugh P, Walters W, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336 Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461 DeSantis T, Hugenholtz P, Larsen N, Rojas M, Brodie E, Keller K, Huber T, Dalevi D, Hu P, Andersen G (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072 Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi:10.1128/aem.00062-07 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300 McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore, pp 254–260 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. doi:10.1186/gb-2011-12-6-r60 Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. doi:10.1038/nbt.2676 Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Bjorck I, Backhed F (2015) Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. doi:10.1016/j.cmet.2015.10.001 Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. doi:10.1038/nature09944 Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with Gut microbial enterotypes. Science 334(6052):105–108. doi:10.1126/science.1208344 Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee Ying S, De Vadder F, Arora T, Hallen A, Martens E, Björck I, Bäckhed F (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metabol. doi: 10.1016/j.cmet.2015.10.001 Matsushita K, Hamaguchi M, Hashimoto M, Yamazaki M, Yamazaki T, Asai K, Yamori M, Bessho K, Toda H, Hasegawa G, Nakamura N, Fukui M (2015) The novel association between red complex of oral microbe and body mass index in healthy Japanese: a population based cross-sectional study. J Clin Biochem Nutr 57(2):135–139. doi:10.3164/jcbn.15-19 Quevrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermudez-Humaran LG, Pigneur B, Lequin O, Kharrat P, Thomas G, Rainteau D, Aubry C, Breyner N, Afonso C, Lavielle S, Grill JP, Chassaing G, Chatel JM, Trugnan G, Xavier R, Langella P, Sokol H, Seksik P (2015) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. doi:10.1136/gutjnl-2014-307649 Haro C, Garcia-Carpintero S, Alcala-Diaz JF, Gomez-Delgado F, Delgado-Lista J, Perez-Martinez P, Rangel Zuniga OA, Quintana-Navarro GM, Landa BB, Clemente JC, Lopez-Miranda J, Camargo A, Perez-Jimenez F (2015) The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. doi:10.1016/j.jnutbio.2015.08.011 Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diab Res 2012:902917. doi:10.1155/2012/902917 Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487(7405):104–108. doi:10.1038/nature11225