Improved precision of noise estimation in CT with a volume-based approach

Springer Science and Business Media LLC - Tập 5 - Trang 1-7 - 2021
Hendrik Joost Wisselink1, Gert Jan Pelgrim1, Mieneke Rook1,2, Ivan Dudurych1, Maarten van den Berge3, Geertruida H. de Bock4, Rozemarijn Vliegenthart1
1Department of Radiology, EB44, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
2Department of Radiology and Nuclear Medicine, Martini Hospital Groningen, Groningen, The Netherlands
3Department of Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
4Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen The Netherlands

Tóm tắt

Assessment of image noise is a relevant issue in computed tomography (CT). Noise is routinely measured by the standard deviation of density values (Hounsfield units, HU) within a circular region of interest (ROI). We explored the effect of a spherical volume of interest (VOI) on noise measurements. Forty-nine chronic obstructive pulmonary disease patients underwent CT with clinical protocol (regular dose [RD], volumetric CT dose index [CTDIvol] 3.04 mGy, 64-slice unit), and ultra-low dose (ULD) protocol (median CTDIvol 0.38 mGy, dual-source unit). Noise was measured in 27 1-cm2 ROIs and 27 0.75-cm3 VOIs inside the trachea. Median true noise was 21 HU (range 17-29) for RD-CT and 33 HU (26-39) for ULD-CT. The VOI approach resulted in a lower mean distance between limits of agreement compared to ROI: 5.9 versus 10.0 HU for RD-CT (−40%); 4.7 versus 9.9 HU for ULD-CT (−53%). Mean systematic bias barely changed: −1.6 versus −0.9HU for RD-CT; 0.0 to 0.4HU for ULD-CT. The average measurement time was 6.8 s (ROI) versus 9.7 (VOI), independent of dose level. For chest CT, measuring noise with a VOI-based instead of a ROI-based approach reduces variability by 40-53%, without a relevant effect on systematic bias and measurement time.

Tài liệu tham khảo

European Commission (2000) European guidelines on quality criteria for CT, available at https://op.europa.eu/s/n8PM, archived at http://web.archive.org/web/20210225144451/https://op.europa.eu/o/opportal-service/download-handler?identifier=d229c9e1-a967-49de-b169-59ee68605f1a&format=pdf&language=en&productionSystem=cellar. Office for Official Publications of the European Communities Messerli M, Ottilinger T, Warschkow R, Leschka S, Alkadhi H, Wildermuth S, Bauer RW (2017) Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT–intra-individual comparison with standard dose CT. Eur J Radiol 91:1–9. https://doi.org/10.1016/j.ejrad.2017.03.003 den Harder AM, de Boer E, Lagerweij SJ, Boomsma MF, Schilham AMR, Willemink MJ, Milles J, Leiner T, Budde RPJ, de Jong PA (2018) Emphysema quantification using chest CT: influence of radiation dose reduction and reconstruction technique. Eur Radiol Exp 2:30. https://doi.org/10.1186/s41747-018-0064-3 Martin SP, Gariani J, Feutry G, Adler D, Karenovics W, Becker CD, Montet X (2019) Emphysema quantification using hybrid versus model-based generations of iterative reconstruction: SAFIRE versus ADMIRE. Medicine 98:e14450. https://doi.org/10.1097/MD.0000000000014450 Wisselink HJ, Pelgrim GJ, Rook M, van den Berge M, Slump K, Nagaraj Y, van Ooijen P, Oudkerk M, Vliegenthart R (2019) Potential for dose reduction in CT emphysema densitometry with post-scan noise reduction: a phantom study. Br J Radiol 93:20181019. https://doi.org/10.1259/bjr.20181019 Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol 14:1058–1068. https://doi.org/10.1016/j.acra.2007.05.023 Bora A, Alptekin C, Yavuz A, Batur A, Akdemir Z, Berköz M (2014) Assessment of liver volume with computed tomography and comparison of findings with ultrasonography. Abdominal Imaging 39:1153–1161. https://doi.org/10.1007/s00261-014-0146-5 Kalra MK, Maher MM, Kamath RS, Horiuchi T, Toth TL, Halpern EF, Saini S (2004) Sixteen–detector row CT of abdomen and pelvis: study for optimization of z-axis modulation technique performed in 153 patients. Radiology 233:241–249. https://doi.org/10.1148/radiol.2331031505 Pontana F, Pagniez J, Flohr T, Faivre JB, Duhamel A, Remy J, Remy-Jardin M (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur Radiol 21:627–635. https://doi.org/10.1007/s00330-010-1990-5 Wetzl M, May MS, Weinmann D, Hammon M, Treutlein C, Zeilinger M, Kiefer A, Trollmann R, Woelfle J, Uder M, Rompel O (2020) Dual-source computed tomography of the lung with spectral shaping and advanced iterative reconstruction: potential for maximum radiation dose reduction. Pediatr Radiol 50:1240–1248. https://doi.org/10.1007/s00247-020-04714-0 Lenga L, Lange M, Martin SS, Albrecht MH, Booz C, Yel I, Arendt CT, Vogl TJ, Leithner D (2021) Head and neck single-and dual-energy CT: differences in radiation dose and image quality of 2nd and 3rd generation dual-source CT. Br J Radiol 94:20210069. https://doi.org/10.1259/bjr.20210069 Noda Y, Iritani Y, Kawai N, Miyoshi T, Ishihara T, Hyodo F, Matsuo M (2021) Deep learning image reconstruction for pancreatic low-dose computed tomography: comparison with hybrid iterative reconstruction. Abdom Radiol:1–7. https://doi.org/10.1007/s00261-021-03111-x Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310. https://doi.org/10.1016/S0140-6736(86)90837-8 Riederer SJ, Pelc NJ, Chesler DA (1978) The noise power spectrum in computed X-ray tomography. Phys Med Biol 23:446–454. https://doi.org/10.1088/0031-9155/23/3/008 Pan T, Hasegawa A, Luo D, Wu CC, Vikram R (2020) Technical note: impact on central frequency and noise magnitude ratios by advanced CT image reconstruction techniques. Med Phys 47:480–487. https://doi.org/10.1002/mp.13937 Christianson O, Winslow J, Frush DP, Samei E (2015) Automated technique to measure noise in clinical CT examinations. Am J Roentgenol 205:W93–W99. https://doi.org/10.2214/AJR.14.13613 Tian X, Samei E (2016) Accurate assessment and prediction of noise in clinical CT images. Med Phys 43:475–482. https://doi.org/10.1118/1.4938588 Goerner FL, Clarke GD (2011) Measuring signal-to-noise ratio in partially parallel imaging MRI. Med Phys 38:5049–5057. https://doi.org/10.1118/1.3618730 Malkus A, Szczykutowicz TP (2017) A method to extract image noise level from patient images in CT. Med Phys 44:2173–2184. https://doi.org/10.1002/mp.12240 Yi X, Guan X, Chen C, Zhang Y, Zhang Z, Li M, Liu P, Yu A, Long X, Liu L, Chen BT, Zee C (2018) Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma. J Cancer 9:3577–3582. https://doi.org/10.7150/jca.26356 Masuda T, Nakaura T, Funama Y, Okimoto T, Sato T, Higaki T, Noda N, Imada N, Baba Y, Awai K (2019) Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: validation with IB-IVUS. J Cardiovasc Comput Tomogr 13:163–169. https://doi.org/10.1016/j.jcct.2018.10.018 Han D, Heuvelmans MA, Oudkerk M (2017) Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl Lung Cancer Res 6:52. https://doi.org/10.21037/tlcr.2017.01.05 Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear Medicine (EANM) (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354. https://doi.org/10.1007/s00259-014-2961-x Jensen CT, Liu X, Tamm EP, Chandler AG, Sun J, Morani AC, Javadi S, Wagner-Bartak NA (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. Am J Roentgenol 215:50–57. https://doi.org/10.2214/AJR.19.22332 QIBA Lung Density Biomarker Committee. Computed tomography: lung densitometry, quantitative imaging biomarkers alliance. Profile Stage: consensus. September 04, 2020. Available from: http://web.archive.org/web/20201216134027/https://qibawiki.rsna.org/images/a/a8/QIBA_CT_Lung_Density_Profile_090420-clean.pdf