Cải thiện khả năng chịu tổn thương do bức xạ ở nhiệt độ cao trong một loại gốm ba pha có heterointerfaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zinkle, S. J. & Pells, G. P. Microstructure of Al2O3 and MgAl2O4 irradiated at low temperatures. J. Nucl. Mater. 253, 120–132 (1998).
Shen, T. D. et al. Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90, 263115 (2007).
Dey, S. et al. Radiation Tolerance of Nanocrystalline Ceramics: Insights from Yttria Stabilized Zirconia. Sci. Rep. 5, 7746 (2015).
Zhang, X. et al. Radiation damage in nanostructured materials. Prog. Mater. Sci. 96, 217–321 (2018).
Beyerlein, I. J., Demkowicz, M. J., Misra, A. & Uberuaga, B. P. Defect-interface interactions. Prog. Mater. Sci. 74, 125–210 (2015).
Misra, A., Demkowicz, M. J., Zhang, X. & Hoagland, R. G. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62–65 (2007).
Demkowicz, M. J., Hoagland, R. G. & Hirth, J. P. Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).
Zou, J. et al. Design of α-Al2O3/Cr2O3 nano-multilayered composite films with enhanced irradiation tolerance prepared by epitaxial growth at low temperature. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 406, 628–633 (2017).
Wang, H. et al. Enhanced radiation tolerance of YSZ/Al2O3 multilayered nanofilms with pre-existing nanovoids. Acta Mater. 144, 691–699 (2018).
Kim, B., Hiraga, K., Morita, K. & Sakka, Y. A high-strain-rate superplastic ceramic. Nature 413, 288–291 (2001).
Valdez, J. A. et al. 10 MeV Au ion irradiation effects in an MgO–HfO2 ceramic–ceramic (CERCER) composite. J. Nucl. Mater. 393, 126–133 (2009).
Han, W. et al. Design of Radiation Tolerant Materials Via Interface Engineering. Adv. Mater. 25, 6975–6979 (2013).
Hobbs, L. W., Clinard, W., Zinkle, S. J. & Ewing, R. C. Radiation effects in ceramics. J. Nucl. Mater. 216, 291–321 (1994).
Kinoshita, C., Fukumoto, K., Fukuda, K., Garner, F. A. & Hollenberg, G. W. Why is magnesia spinel a radiation-resistant material? J. Nucl. Mater. 219, 143–151 (1995).
Zinkle, S. J. Effect of irradiation spectrum on the microstructural evolution in ceramic insulators. J. Nucl. Mater. 219, 113–127 (1995).
Tallman, D. J. et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121–1085 °C temperature range. J. Nucl. Mater. 484, 120–134 (2017).
Kondo, S., Katoh, Y. & Snead, L. L. Microstructural defects in SiC neutron irradiated at very high temperatures. J. Nucl. Mater. 382, 160–169 (2008).
Ludy, J. E. & Rupert, T. J. Amorphous intergranular film act as ultra-efficient defect sinks during collision cascades. Scr. Mater. 110, 37–40 (2016).
Han, W. Z., Demkowicz, M. J., Fu, E. G., Wang, Y. Q. & Misra, A. Effect of grain boundary character on sink efficiency. Acta Mater. 60, 6341–6351 (2012).
Kushima, A. & Yildiz, B. Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? J. Mater. Chem. 20, 4809–4819 (2010).
Aidhy, D. S., Zhang, Y. & Weber, W. J. Strained Ionic Interfaces: Effect on Oxygen Diffusivity from Atomistic Simulations. J. Phys. Chem. C 118, 4207–4212 (2014).
Vetterick, G. A. et al. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures. Sci. Rep. 7, 12275 (2017).
Zhang, Y. et al. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation. Phys. Rev. B (2010).
Sinha, K., Pearson, B., Casolco, S. R., Garay, J. E. & Graeve, O. A. Synthesis and Consolidation of BaAl2Si2O8:Eu: Development of an Integrated Process for Luminescent Smart Ceramic Materials. J. Am. Ceram. Soc. 92, 2504–2511 (2009).
Zhang, Y. et al. New ion beam materials laboratory for materials modification and irradiation effects research. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 338, 19–30 (2014).
Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1818–1823 (2010).
Stoller, R. E. et al. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 310, 75–80 (2013).