Improved application technique of albumin-glutaraldehyde glue for repair of superficial lung defects

Journal of Cardiothoracic Surgery - Tập 11 - Trang 1-5 - 2016
Maximilian Bures1, Patrick Zardo2, Florian Länger3, Ruoyu Zhang4,5
1Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
2Department of Cardiac and Thoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
3Department of Pathology, Hannover Medical School, Hannover, Germany
4Department of Thoracic Surgery, Center for Pneumology and Thoracic Surgery, Chest Hospital Schillerhoehe, Teaching hospital of the University of Tuebingen, Gerlingen, Germany
5Department of Thoracic Surgery, Center for Pneumology and Thoracic Surgery, Schillerhoehe Hospital, Gerlingen, Germany

Tóm tắt

Albumin-glutaraldehyde glue has gained widespread acceptance for treatment of alveolar air leaks (AAL) in thoracic surgery. As liquid run-off during application is detrimental to its sealing efficacy, we developed a modified technique and assessed it in vitro. Caudal lobes of freshly excised swine lungs (n = 20) were intubated and ventilated. A standardized focal superficial parenchymal defect (40 × 25 mm) was created on the inflated lung. AAL was assessed under exposure to increasing inspired tidal volume (TVi). Lung lobes were randomly selected and subjected to either a standard sealing suggested by the manufacturer (control group) or a modified technique relying on placement of a square silicone frame around the lesion site (study group). AAL was subsequently assessed until burst failure occurred and the occuring lesions length was recorded on the inflated lung to evaluate elasticity of underlying tissue. Superficial parenchymal defects resulted in AAL increasing with ascending TVi. AAL prior to sealant application was comparable in both groups. An application error occurred once in our control group. At TVi = 400, 500, 600 and 700 ml, the albumin-glutaraldehyde glue achieved complete sealing in 10, 10, 9 and 8 lungs respectively in our study group, as opposed to 9, 7, 6 and 4 lobes in the control group. The required mean burst pressure was significantly higher in our study group (41.0 ± 1.0 vs. 37.5 ± 4.2 cmH2O, p = 0.0195), but there was no difference in expansion of covered defect between both groups (1.0 ± 0.4 vs. 1.5 ± 1.7 mm, p = 0.3772). Our tests suggest that frame-assisted sealant application might prevent glue run-off and thus improves its sealing efficacy. We encourage further investigation of this technique in well-designed, controlled clinical trials.

Tài liệu tham khảo

Abolhoda A, Liu D, Brooks A, Burt M. Prolonged air leak following radical upper lobectomy: an analysis of incidence and possible risk factors. Chest. 1998;113:1507–10. Bardell T, Petsikas D. What keeps postpulmonary resection patients in hospital? Can Respir J. 2003;10:86–9. Okereke I, Murthy SC, Alster JM, Blackstone EH, Rice TW. Characterization and importance of air leak after lobectomy. Ann Thorac Surg. 2005;79:1167–73. Belda-Sanchis J, Serra-Mitjans M, Iglesias Sentis M, Rami R. Surgical sealant for preventing air leaks after pulmonary resections in patients with lung cancer. Cochrane Database Syst Rev. 2010:Cd003051. Chao HH, Torchiana DF. BioGlue: albumin/glutaraldehyde sealant in cardiac surgery. J Card Surg. 2003;18:500–3. Tansley P, Al-Mulhim F, Lim E, Ladas G, Goldstraw P. A prospective, randomized, controlled trial of the effectiveness of BioGlue in treating alveolar air leaks. J Thorac Cardiovasc Surg. 2006;132:105–12. Passage J, Tam R, Windsor M, O’Brien M. Bioglue: a review of the use of this new surgical adhesive in thoracic surgery. ANZ J Surg. 2005;75:315–8. Pedersen TB, Honge JL, Pilegaard HK, Hasenkam JM. Comparative study of lung sealants in a porcine ex vivo model. Ann Thorac Surg. 2012;94:234–40. Zhang R, Bures M, Hoffler K, Jonigk D, Haverich A, Krueger M. In vitro comparison of two widely used surgical sealants for treating alveolar air leak. Thorac Cardiovasc Surg. 2014;62:705–9. Gabrijelcic T. Blockage of a mechanical aortic valve leaflet with Bioglue: a case report. Heart Surg Forum. 2012;15:E310–312. Macchiarini P, Wain J, Almy S, Dartevelle P. Experimental and clinical evaluation of a new synthetic, absorbable sealant to reduce air leaks in thoracic operations. J Thorac Cardiovasc Surg. 1999;117:751–8. Zhang R, Bures M, Hoffler HK, Zinne N, Langer F, Bisdas T, et al. TissuePatch as a novel synthetic sealant for repair of superficial lung defect: in vitro tests results. Ann Surg Innov Res. 2012;6:12. James SJ, Pogribna M, Miller BJ, Bolon B, Muskhelishvili L. Characterization of cellular response to silicone implants in rats: implications for foreign-body carcinogenesis. Biomaterials. 1997;18:667–75. Perricone C, Colafrancesco S, Mazor RD, Soriano A, Agmon-Levin N, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects. J Autoimmun. 2013;47:1–16. Su CW, Dreyfuss DA, Krizek TJ, Leoni KJ. Silicone implants and the inhibition of cancer. Plast Reconstr Surg. 1995;96:513–8. discussion 519–520. Carrillo EH, Kozloff M, Saridakis A, Bragg S, Levy J. Thoracoscopic application of a topical sealant for the management of persistent posttraumatic pneumothorax. J Trauma. 2006;60:111–4. Shaw JP, Dembitzer FR, Wisnivesky JP, Litle VR, Weiser TS, Yun J, et al. Video-assisted thoracoscopic lobectomy: state of the art and future directions. Ann Thorac Surg. 2008;85:S705–709.