Improved Selectivity in 7 T Digit Mapping Using VASO-CBV

Brain Topography - Tập 36 - Trang 23-31 - 2022
Ícaro A. F. de Oliveira1,2,3, Jeroen C. W. Siero1,4, Serge O. Dumoulin1,2,3,5, Wietske van der Zwaag1,3
1Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
2Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
3Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
4Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
5Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands

Tóm tắt

Functional magnetic resonance imaging (fMRI) at Ultra-high field (UHF, ≥ 7 T) benefits from significant gains in the BOLD contrast-to-noise ratio (CNR) and temporal signal-to-noise ratio (tSNR) compared to conventional field strengths (3 T). Although these improvements enabled researchers to study the human brain to unprecedented spatial resolution, the blood pooling effect reduces the spatial specificity of the widely-used gradient-echo BOLD acquisitions. In this context, vascular space occupancy (VASO-CBV) imaging may be advantageous since it is proposed to have a higher spatial specificity than BOLD. We hypothesized that the assumed higher specificity of VASO-CBV imaging would translate to reduced overlap in fine-scale digit representation maps compared to BOLD-based digit maps. We used sub-millimeter resolution VASO fMRI at 7 T to map VASO-CBV and BOLD responses simultaneously in the motor and somatosensory cortices during individual finger movement tasks. We assessed the cortical overlap in different ways, first by calculating similarity coefficient metrics (DICE and Jaccard) and second by calculating selectivity measures. In addition, we demonstrate a consistent topographical organization of the targeted digit representations (thumb-index-little finger) in the motor areas. We show that the VASO-CBV responses yielded less overlap between the digit clusters than BOLD, and other selectivity measures were higher for VASO-CBV too. In summary, these results were consistent across metrics and participants, confirming the higher spatial specificity of VASO-CBV compared to BOLD.

Tài liệu tham khảo

Akselrod M, Martuzzi R, Serino A, van der Zwaag W, Gassert R, Blanke O (2017) Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: a 7T fMRI study. Neuroimage 159:473–487. https://doi.org/10.1016/j.neuroimage.2017.06.021 Besle J, Sánchez-Panchuelo RM, Bowtell R, Francis S, Schluppeck D (2014) Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum Brain Mapp 35:2027–2043. https://doi.org/10.1002/HBM.22310/FORMAT/PDF Brainard DH (1997) The psychophysics toolbox. Spat vis 10:433–436. https://doi.org/10.1163/156856897X00357 Butterworth S, Francis S, Kelly E, McGlone F, Bowtell R, Sawle GV (2003) Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 18:673–682. https://doi.org/10.1002/MDS.10416 Cai Y, Hofstetter S, van der Zwaag W, Zuiderbaan W, Dumoulin SO (2021) Individualized cognitive neuroscience needs 7T: comparing numerosity maps at 3T and 7T MRI. Neuroimage 237:118184. https://doi.org/10.1016/j.neuroimage.2021.118184 Carass A, Roy S, Gherman A, Reinhold JC, Jesson A, Arbel T, Maier O, Handels H, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Pham DL, Crainiceanu CM, Calabresi PA, Prince JL, Roncal WRG, Shinohara RT, Oguz I (2020) Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis. Sci Rep 10:8242. https://doi.org/10.1038/s41598-020-64803-w Dumoulin SO, Fracasso A, van der Zwaag W, Siero JCW, Petridou N (2017) Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.01.028 Gardner EP, Costanzo RM (1980) Spatial integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys. J Neurophysiol 43:420–443. https://doi.org/10.1152/JN.1980.43.2.420 Georgopoulos AP, Pellizzer G, Poliakov AV, Schieber MH (1999) Neural coding of finger and wrist movements. J Comput Neurosci 6:279–288. https://doi.org/10.1023/A:1008810007672 Huber L, Finn ES, Handwerker DA, Bönstrup M, Glen DR, Kashyap S, Ivanov D, Petridou N, Marrett S, Goense J, Benedikt A, Bandettini PA, Poser BA, Bandettini PA (2020) Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex. Neuroimage. https://doi.org/10.1016/j.neuroimage.2019.116463 Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A, Stüber C, Gonzalez-Castillo J, Ivanov D, Marrett S, Guidi M, Goense J, Poser BA, Bandettini PA (2017) High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1. Neuron 96:1253-1263.e7. https://doi.org/10.1016/j.neuron.2017.11.005 Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, Möller HE, Turner R (2014) Slab-selective, BOLD-corrected VASO at 7 tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med 72:137–148. https://doi.org/10.1002/mrm.24916 Hurley AC, Al-radaideh A, Bai L, Aickelin U, Coxon R, Glover P, Gowland PA (2010) Tailored RF pulse for magnetization inversion at ultrahigh field. Magn Reson Med 63:51–58. https://doi.org/10.1002/mrm.22167 Jin T, Kim SG (2008) Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T. Neuroimage 40:59–67. https://doi.org/10.1016/j.neuroimage.2007.11.045 Kashyap S, Ivanov D, Havlicek M, Huber L, Poser BA, Uludağ K (2021) Sub-millimetre resolution laminar fMRI using arterial spin labelling in humans at 7 T. PLoS ONE 16:e0250504. https://doi.org/10.1371/journal.pone.0250504 Kim S-G, Ogawa S (2012) Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 32:1188–1206. https://doi.org/10.1038/jcbfm.2012.23 Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C (2007) What’s new in psychtoolbox-3. Perception 36:1–16 Kolasinski X, Makin TR, Jbabdi S, Clare S, Stagg CJ, Johansen-Berg H (2016) Investigating the stability of fine-grain digit somatotopy in individual human participants. J Neurosci 36:1113–1127. https://doi.org/10.1523/JNEUROSCI.1742-15.2016 Lu H, Hua J, van Zijl PCMM (2013) Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI. NMR Biomed 26:932–948. https://doi.org/10.1002/nbm.2905 Markuerkiaga I, Barth M, Norris DG (2016) A cortical vascular model for examining the specificity of the laminar BOLD signal. Neuroimage 132:491–498. https://doi.org/10.1016/j.neuroimage.2016.02.073 Marquis R, Jastrzębowska M, Draganski B (2017) Novel imaging techniques to study the functional organization of the human brain. Clin Transl Neurosci. 1:11. https://doi.org/10.1177/2514183X17714104 Martuzzi R, van der Zwaag W, Farthouat J, Gruetter R, Blanke O (2014) Human finger somatotopy in areas 3b, 1, and 2: a 7T fMRI study using a natural stimulus. Hum Brain Mapp 35:213–226. https://doi.org/10.1002/hbm.22172 Menon RS (2002) Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn Reson Med 47:1–9. https://doi.org/10.1002/mrm.10041 Moeller S, Pisharady PK, Ramanna S, Lenglet C, Wu X, Dowdle L, Yacoub E, Uğurbil K, Akçakaya M (2021) NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.117539 Norris DG, Polimeni JR (2019) Laminar (f)MRI: a short history and future prospects. Neuroimage. https://doi.org/10.1016/j.neuroimage.2019.04.082 Oliveira ÍAF, Cai Y, Hofstetter S, Siero JCW, van der Zwaag W, Dumoulin SO (2022) Comparing BOLD and VASO-CBV population receptive field estimates in human visual cortex. Neuroimage 248:118868. https://doi.org/10.1016/j.neuroimage.2021.118868 Oliveira ÍAF, van der Zwaag W, Raimondo L, Dumoulin SO, Siero JCW (2021) Comparing hand movement rate dependence of cerebral blood volume and BOLD responses at 7T. Neuroimage 226:117623. https://doi.org/10.1016/j.neuroimage.2020.117623 Olman CA, Pickett KA, Schallmo MP, Kimberley TJ (2012) Selective BOLD responses to individual finger movement measured with fMRI at 3T. Hum Brain Mapp 33:1594–1606. https://doi.org/10.1002/hbm.21310 Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443. https://doi.org/10.1093/brain/60.4.389 R Core Team, 2020. A Language and Environment for Statistical Computing. R Found. Stat. Comput. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D (2010) Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol 103:2544–2556. https://doi.org/10.1152/jn.01017.2009 Schellekens W, Petridou N, Ramsey NF (2018) Detailed somatotopy in primary motor and somatosensory cortex revealed by Gaussian population receptive fields. Neuroimage 179:337–347. https://doi.org/10.1016/J.NEUROIMAGE.2018.06.062 Serino A, Akselrod M, Salomon R, Martuzzi R, Blefari ML, Canzoneri E, Rognini G, van der Zwaag W, Iakova M, Luthi F, Amoresano A, Kuiken T, Blanke O (2017) Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain 140:2993–3011. https://doi.org/10.1093/brain/awx242 Siero JCW, Hermes D, Hoogduin H, Luijten PR, Ramsey NF, Petridou N (2014) BOLD matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 101:177–184. https://doi.org/10.1016/j.neuroimage.2014.07.002 Stringer EA, Chen LM, Friedman RM, Gatenby C, Gore JC (2011) Differentiation of somatosensory cortices by high-resolution fMRI at 7T. Neuroimage 54:1012–1020. https://doi.org/10.1016/j.neuroimage.2010.09.058 Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16:1062–1067. https://doi.org/10.1006/nimg.2002.1082 Uğurbil K (2021) Ultrahigh field and ultrahigh resolution fMRI. Curr Opin Biomed Eng 18:100288. https://doi.org/10.1016/J.COBME.2021.100288 Uludağ K, Blinder P (2016) Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Neuroimage 168:279–295. https://doi.org/10.1016/j.neuroimage.2017.02.063 Uludaǧ K, Müller-Bierl B, Uǧurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165. https://doi.org/10.1016/j.neuroimage.2009.05.051 van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434. https://doi.org/10.1016/j.neuroimage.2009.05.015 Vizioli L, Moeller S, Dowdle L, Akçakaya M, De Martino F, Yacoub E, Uğurbil K (2021) Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat Commun 12:5181. https://doi.org/10.1038/s41467-021-25431-8 Yacoub E, Wald LL (2018) Pushing the spatio-temporal limits of MRI and fMRI. Neuroimage 164:1–3. https://doi.org/10.1016/j.neuroimage.2017.11.034