Importance of lattice matching and surface arrangement for the helicon-wave-excited-plasma sputtering epitaxy of ZnO

Journal of Applied Physics - Tập 95 Số 12 - Trang 7856-7861 - 2004
Toshie Koyama1, Shigefusa F. Chichibu1
1Institute of Applied Physics and Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Tóm tắt

Importance of lattice matching and proper surface arrangement of the substrate was shown to obtain better epilayer qualities of ZnO grown by an epitaxy method, the helicon-wave-excited-plasma sputtering epitaxy. The a-axis-locked single-domain (0001) ZnO epitaxy was accomplished on the uniaxially nearly lattice-matched (112̄0) Al2O3 substrate. The epilayer had approximately 50-100-nm-diam atomically smooth two-dimensional terraces with 0.26-nm-high monolayer steps, and exhibited a predominant near-band-edge photoluminescence peak, whose full width at half maximum value was 107 meV at room temperature. The a-axis-locked epitaxy was also realized on a lattice-mismatched (0001) Al2O3 substrate, indicating the compatibility of oxide substrates. However, the ZnO epilayer grown on the (0001) AlN epitaxial template prepared on (0001) Al2O3 had an in-plane 12-fold multidomain structure, though the effective lattice-mismatch between [112̄0] ZnO and [112̄0] AlN is smaller than that between [112̄0] ZnO and [101̄0] Al2O3. Proper purification and polarity-control techniques for the AlN surface, and/or insertion of an appropriate buffer layer are required to form single-domain heterovalent ZnO/AlN interfaces.

Từ khóa


Tài liệu tham khảo

1973, Phys. Status Solidi, 56, 249, 10.1002/pssb.2220560124

1997, Solid State Commun., 103, 459, 10.1016/S0038-1098(97)00216-0

1998, Mater. Sci. Eng., 54, 24, 10.1016/S0921-5107(98)00120-2

1999, Appl. Phys. Lett., 75, 3947, 10.1063/1.125503

1999, Jpn. J. Appl. Phys., Part 2, 38, L1205, 10.1143/JJAP.38.L1205

2001, Physica B, 302–303, 140

1996, J. Electron. Mater., 25, 855, 10.1007/BF02666649

1997, Appl. Phys. Lett., 70, 2230, 10.1063/1.118824

1998, Appl. Phys. Lett., 73, 1038, 10.1063/1.122077

2000, J. Cryst. Growth, 209, 526, 10.1016/S0022-0248(99)00613-2

2000, J. Cryst. Growth, 209, 532, 10.1016/S0022-0248(99)00614-4

2000, Appl. Phys. Lett., 77, 1801, 10.1063/1.1311603

2001, J. Cryst. Growth, 227/228, 911, 10.1016/S0022-0248(01)00927-7

2001, J. Cryst. Growth, 227/228, 923, 10.1016/S0022-0248(01)00929-0

1997, Jpn. J. Appl. Phys., Part 2, 36, L1453, 10.1143/JJAP.36.L1453

2001, Jpn. J. Appl. Phys., Part 2, 40, L657, 10.1143/JJAP.40.L657

1981, Phys. Rev. B, 23, 5511, 10.1103/PhysRevB.23.5511

2002, J. Appl. Phys., 93, L756

2002, Appl. Phys. Lett., 80, 2860, 10.1063/1.1471374

2002, Jpn. J. Appl. Phys., Part 2, 41, L935, 10.1143/JJAP.41.L935

2003, Appl. Phys. Lett., 83, 2784, 10.1063/1.1615834

2002, Appl. Phys. Lett., 81, 1830, 10.1063/1.1504875

1998, Appl. Phys. Lett., 72, 235, 10.1063/1.120707

1991, Plasma Phys. Controlled Fusion, 33, 339, 10.1088/0741-3335/33/4/006

1992, J. Vac. Sci. Technol. A, 10, 1389, 10.1116/1.578256

1993, J. Vac. Sci. Technol. B, 11, 2046

1994, Oyo Butsuri, 63, 559

2002, J. Appl. Phys., 91, 874, 10.1063/1.1426238

2003, Appl. Phys. Lett., 83, 2973, 10.1063/1.1616650

1999, Appl. Phys. Lett., 75, 2635, 10.1063/1.125102

1998, Appl. Phys. Lett., 73, 348, 10.1063/1.121830

2001, Jpn. J. Appl. Phys., Part 2, 40, L1089, 10.1143/JJAP.40.L1089

2002, J. Vac. Sci. Technol. B, 20, 42, 10.1116/1.1428279

1978, Phys. Fluids, 21, 2078

2001, J. Cryst. Growth, 229, 63, 10.1016/S0022-0248(01)01051-X

2002, Mater. Res. Soc. Symp. Proc., 693, 541

2002, Appl. Phys. Lett., 81, 652, 10.1063/1.1493666

1996, Appl. Phys. Lett., 68, 643, 10.1063/1.116495

1998, J. Appl. Phys., 84, 2597, 10.1063/1.368440

1999, Appl. Phys. Lett., 75, 674, 10.1063/1.124478

2000, J. Appl. Phys., 88, 1158, 10.1063/1.373791

1998, Appl. Phys. Lett., 72, 824, 10.1063/1.120905

2001, Appl. Phys. Lett., 79, 1282, 10.1063/1.1398328

1998, J. Appl. Phys., 84, 3912, 10.1063/1.368595