Implicit–Explicit Schemes for BGK Kinetic Equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andries P., Aoki K., Perthame B. (2002). A consistent BGK-type model for gas mixtures, J. Stat. Phys. 106:993–1018
Andries P., Bourgat J.F., Le-Tallec P., Perthame B. (2002). Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases. Comput. Methods Appl. Math. Eng. 31:3369
Aoki K., Kanba K., Takata S. (1997). Numerical analysis of a supersonic rarefied flow past a flat plate. Phys. Fluids 9:1144–1161
Aoki K., Sone Y., Yamada T. (1990). Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory. Phys. Fluids A 2:1867–1878
Aregba-Driollet D., Natalini R., Tang S. (2003). Explicit diffusive kinetic schemes for non linear degenerate parabolic systems. Math. Comp. 73, 63–94
Asher U., Ruuth S., Spiteri R.J. (1997). Implicit-explicit Runge-Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167
Bhatnagar P.L., Gross E.P., Krook M. (1954). A model for collision processes in gases. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525
Bird G.A. (1994). Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford
Carrillo J.A., Gamba I.M., Majorana A., Shu C.-W. (2003). A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525
Cercignani C. (2000). Rarefied Gas Dynamics, from Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge
Cercignani C., Illner R., Pulvirenti M. (1994). The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin, Applied Mathematical Sciences, vol. 106
Chu C.K. (1965). Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 4, 12–22
Coron F., Perthame B. (1991). Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28, 26–42
Guo, Z., Zhao, T. S., and Shi, Y. (2005). Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E 71,035301-1, 035301-4.
Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303
Holway L.H. (1966). Kinetic Theory of Shock Structure using an Ellipsoidal Distribution Function. Academic Press, New York, pp. 193–215.
Kennedy C.A., Carpenter M.H. (2003). Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181
Mieussens L. (2000). Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10:1121–1149
Mieussens L. (2000). Schemes for Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466
Monaco R., Bianchi M.P., Soares A.J. (2005). BGK-type models in strong reaction and kinetic chemical equilibrium regimes. J. Phys. A Math. Gen. 38:10413–10431
Pareschi L., Puppo G., Russo G. (2005). Central Runge–Kutta schemes for conservation laws. SIAM J. Sci. Comput. 26, 979–999
Pareschi, L., and Russo, G. (2000). Implicit-Explicit Runge–Kutta Schemes for Stiff Systems of Differential Equations, Recent Trends in Numerical Analysis. In Brugnano, L., and Trigiante, D. (eds.), vol. 3, Nova Science, New York, pp. 269–289.
Pareschi L., Russo G. (2000). Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37:1217–1245
Pareschi, L., and Russo, G. (2001). An introduction to Monte Carlo methods for the Boltzmann equation. ESAIM: Proceedings, Vol. 10, Soc. Math. Appl. Indust., Paris, 1999, pp. 35–76.
Pareschi L., Russo G. (2005). Implicit-explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155
Pareschi, L., and Russo, G. (2005). An introduction to the numerical analysis of the Boltzmann equation. Riv. Mater. Univ. Parma 4 **, 145–250.
Perthame B. (1989). Global existence to the BGK model of Boltzmann equation. J. Diff. Equat. 82, 191–205
Puppo G. (2003/04). Numerical entropy production for central schemes. SIAM J. Sci. Comput. 25:1382–1415
Puppo, G., and Russo, G. (2005). Staggered finite difference schemes for balance laws. Proceedings of HYP 2004. Hyperbolic problems: Theory, Numerics, Applications, Vol II, 2006, Yokohama Publishers, pp. 243–250.
Saint-Raymond L. (2003). From the BGK model to the Navier-Stokes equations. Ann. Sci. Écn. Norm. Super. 4 esérie, t. 36, 271–317
Shu, C.-W. (1998). Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, Quarteroni, A. (ed.), Lecture notes in Mathematics, Vol. 1697, Springer, Berlin, pp. 325–432.
Shu C.-W., Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 438–471
Vincenti, W. G., and Kruger, C. H. (1986). Introduction to Physical Gas Dynamics, Krieger FL, USA.
Xu K. (2001). A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335