Implicit–Explicit Schemes for BGK Kinetic Equations

Sandra Pieraccini1, Gabriella Puppo1
1Dipartimento di Matematica, Politecnico di Torino, Torino, Italia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andries P., Aoki K., Perthame B. (2002). A consistent BGK-type model for gas mixtures, J. Stat. Phys. 106:993–1018

Andries P., Bourgat J.F., Le-Tallec P., Perthame B. (2002). Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases. Comput. Methods Appl. Math. Eng. 31:3369

Aoki K., Kanba K., Takata S. (1997). Numerical analysis of a supersonic rarefied flow past a flat plate. Phys. Fluids 9:1144–1161

Aoki K., Sone Y., Yamada T. (1990). Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory. Phys. Fluids A 2:1867–1878

Aregba-Driollet D., Natalini R., Tang S. (2003). Explicit diffusive kinetic schemes for non linear degenerate parabolic systems. Math. Comp. 73, 63–94

Asher U., Ruuth S., Spiteri R.J. (1997). Implicit-explicit Runge-Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167

Bhatnagar P.L., Gross E.P., Krook M. (1954). A model for collision processes in gases. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525

Bird G.A. (1994). Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford

Carrillo J.A., Gamba I.M., Majorana A., Shu C.-W. (2003). A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525

Cercignani C. (2000). Rarefied Gas Dynamics, from Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge

Cercignani C., Illner R., Pulvirenti M. (1994). The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin, Applied Mathematical Sciences, vol. 106

Chu C.K. (1965). Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 4, 12–22

Coron F., Perthame B. (1991). Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28, 26–42

Guo, Z., Zhao, T. S., and Shi, Y. (2005). Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E 71,035301-1, 035301-4.

Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303

Holway L.H. (1966). Kinetic Theory of Shock Structure using an Ellipsoidal Distribution Function. Academic Press, New York, pp. 193–215.

Kennedy C.A., Carpenter M.H. (2003). Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181

Mieussens L. (2000). Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10:1121–1149

Mieussens L. (2000). Schemes for Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466

Monaco R., Bianchi M.P., Soares A.J. (2005). BGK-type models in strong reaction and kinetic chemical equilibrium regimes. J. Phys. A Math. Gen. 38:10413–10431

Pareschi L., Puppo G., Russo G. (2005). Central Runge–Kutta schemes for conservation laws. SIAM J. Sci. Comput. 26, 979–999

Pareschi, L., and Russo, G. (2000). Implicit-Explicit Runge–Kutta Schemes for Stiff Systems of Differential Equations, Recent Trends in Numerical Analysis. In Brugnano, L., and Trigiante, D. (eds.), vol. 3, Nova Science, New York, pp. 269–289.

Pareschi L., Russo G. (2000). Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37:1217–1245

Pareschi, L., and Russo, G. (2001). An introduction to Monte Carlo methods for the Boltzmann equation. ESAIM: Proceedings, Vol. 10, Soc. Math. Appl. Indust., Paris, 1999, pp. 35–76.

Pareschi L., Russo G. (2005). Implicit-explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155

Pareschi, L., and Russo, G. (2005). An introduction to the numerical analysis of the Boltzmann equation. Riv. Mater. Univ. Parma 4 **, 145–250.

Perthame B. (1989). Global existence to the BGK model of Boltzmann equation. J. Diff. Equat. 82, 191–205

Puppo G. (2003/04). Numerical entropy production for central schemes. SIAM J. Sci. Comput. 25:1382–1415

Puppo, G., and Russo, G. (2005). Staggered finite difference schemes for balance laws. Proceedings of HYP 2004. Hyperbolic problems: Theory, Numerics, Applications, Vol II, 2006, Yokohama Publishers, pp. 243–250.

Saint-Raymond L. (2003). From the BGK model to the Navier-Stokes equations. Ann. Sci. Écn. Norm. Super. 4 esérie, t. 36, 271–317

Shu, C.-W. (1998). Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, Quarteroni, A. (ed.), Lecture notes in Mathematics, Vol. 1697, Springer, Berlin, pp. 325–432.

Shu C.-W., Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 438–471

Vincenti, W. G., and Kruger, C. H. (1986). Introduction to Physical Gas Dynamics, Krieger FL, USA.

Xu K. (2001). A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335

Yang J.Y., Huang J.C. (1995). Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys. 120, 323–339