Implication of Socio-Demographics on Cognitive-Related Symptoms in Sports Concussion Among Children
Tóm tắt
Sports-related concussion remains a public health challenge due to its morbidity and mortality. One of the consequences of concussion is cognitive impairment (CI) and cognitive-related symptoms (CRS) which determine, to some extent, physical and behavioral functioning of children who sustain concussion. Despite the high prevalence of CI and CRS associated with concussion, the risk factors are not fully understood. We aimed to characterize CRS and to examine its relationship with race, ethnicity, age, insurance, and sex in a pediatric population. A retrospective cohort (case-only) design was used to assess CRS prevalence and its relationship with race and sex using a pediatric hospital’s electronic medical records. A consecutive sample was used with 1429 cases between 2007 and 2014. Study characteristics were examined using chi-square and log binomial regression for hypothesis-specific testing. Of the 1429 cases, 872 (61.0 %) were boys and 557 (39.0 %) were girls. The racial distribution indicated 1146 (80.2 %) Whites, 170 (11.9 %) Blacks/African Americans, and 113 (7.9 %) others. The prevalence of CRS was 78.0 %. Whereas boys had sustained more concussions, girls were more likely to present with CRS; prevalence risk ratio = 1.07, 95 % CI 1.01–1.13, p = 0.02. The crude analysis indicated no racial disparities in CRS prevalence, but the multivariable analysis did, comparing White to Black/African American children; adjusted prevalence risk ratio (aPRR) = 1.77, 99 % CI 1.02–3.08, p = 0.008. Racial disparities exist in CRS among children with sports-related concussion, and Black/African American children are more likely, relative to Whites, to suffer CRS. Due to uncertainty in causal inference, we caution the interpretation and application of these data in risk-adapted concussion prevention.
Tài liệu tham khảo
Covassin T, Swanik CB, Sachs ML. Sex differences and the incidence of concussions among collegiate athletes. J Athl Train. 2003;38(3):238–44.
Covassin T, Elbin RJ. The female athlete: the role of gender in the assessment and management of sport-related concussion. Clin Sports Med. 2011;30(1):125–31.
Kerr ZY, Evenson KR, Rosamond WD, Mihalik JP, Guskiewicz KM, Marshall SW. Association between concussion and mental health in former collegiate athletes. Inj Epidemiol. 2014;1:28.
Stewart TC, Gilliland J, Fraser DD. An epidemiologic profile of pediatric concussions: identifying urban and rural differences. J Trauma Acute Care Surg. 2014;76(3):736–42.
Langlois JA, Rutland-Brown W, Thomas KE. The incidence of traumatic brain injury among children in the United States: difference by race. J Head Trauma Rehabil. 2005;20(1):229–38.
De Beaumont L, Tremblay S, Henry LC, Poirier J, Lassonde M, Theoret H. Motor system alterations in retired former athletes: the role of aging and concussion history. BMC Neurol. 2013;13:109.
Choe MC, Babikian T, DiFiori J, Hovda DA, Giza CC. A pediatric perspective on concussion pathophysiology. Curr Opin Pediatr. 2012;24(6):689–95.
Gessel LM, Fields SK, Collins CL, Dick RW, Comstock RD. Concussions among United States high school and collegiate athletes. J Athl Train. 2007;42(4):495–503.
Marar M, McIlvain NM, Fields SK, Comstock RD. Epidemiology of concussions among United States high school athletes in 20 sports. Am J Sports Med. 2012;40(4):747–55.
Lincoln AE, Caswell SV, Almquist JL, Dunn RE, Norris JB, Hinton RY. Trends in concussion incidence in high school sports: a prospective 11-year study. Am J Sports Med. 2011;39(5):958–63.
Bazarian JJ, Blyth B, McDermott MP, et al. Sex differences in outcome after mild traumatic brain injury. J Neurotrauma. 2010;27:527–39.
Bloodgood B, Inokuchi D, Shawver W, Olson K, Hoffman R, Cohen E, Sarmiento K, Muthuswamy K. Exploration of awareness, knowledge, and perceptions of traumatic brain injury among American youth athletes and their parents. J Adolesc Health. 2013;53(1):34–9.
Catroppa C, Godfery G, Rosenfeld J, et al. Functional Recovery 10 years following pediatric traumatic brain injury: outcomes and predictors. J Neurotrauma. 2012;29:2539–47.
McKinlay A. Injury in preschool-age children. In:Mild Traumatic Brain injury. In: Kirkwood M, Yates K, editors. Children and Adolescents. New York: Guildford Press; 2012.
McKinlay A, Dalrymple-Alford J, Horwood L, Fergusson D. Long-term psychosocial outcomes after mild traumatic brain injury in early childhood. J Neurol Neurosurg Psychiatry. 2002;73:281–8.
Covassin T, Elbin RJ, Bleecker A, Lipchik A, Kontos AP. Are there differences in neurocognitive function and symptoms between male and female soccer players after concussions? Am J Sports Med. 2013;41(12):2890–5.
Kontos AP, Elbin 3rd RJ, Covassin T, Larson E. Exploring differences in computerized neurocognitive concussion testing between African American and White athletes. Arch Clin Neuropsychol. 2010;25(8):734–44.
McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on concussion in sport: the 3rd international conference on concussion in sports held in Zurich, November 2008. J Athl Train. 2009;44(4):434–48.
Zuckerman SL, Apple RP, Odom MJ, Lee YM, Solomon GS, Sills AK. Effect of sex on symptoms and return to baseline in sport-related concussion. J Neurosurg Pediatr. 2014;13(1):72–81.
"Opinion 8.095 - Reporting clinical test results: general guidelines." In: American Medical Association. AMA, 1998. http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-medical-ethics/opinion8095.page. Accessed 6 July 2015.
STATA Data Analysis and Statistical Software. Vers. 13.1. College station. TX: StataCorp LP: Computer software; 2013.
Macciocchi SN, Seel RT, Thompson N. The impact of mild traumatic brain injury on cognitive functioning following co-occuring spinal cord injury. Arch Clin Neuropsychol. 2013;28:684–91.
Frommer LJ, Gurka KK, Cross KM, Ingersoll CD, Comstock RD, Saliba SA. Sex differences in concussion symptoms of high school athletes. J Athl Train. 2011;46(1):76–84.
Tierney RT, Sitler MR, Swanik CB, Swanik KA, Higgins M, Torg J. Gender differences in head-neck segment dynamic stabilization during head acceleration. Med Sci Sports Exerc. 2005;37(2):272–9.
Haider AH, Chang DC, Efron DT, Haut ER, Crandall M, Cornwell 3rd EE. Race and insurance status as risk factors for trauma mortality. Arch Surg. 2008;143(10):945–9.
Willer B, Dumas J, Hutson A, Leddy J. A population based investigation of head injuries and symptoms of concussion of children and adolescents in schools. Injury Prevention. 2004;10:144–8.
McKinlay A, Anderson V. Issues associated with pre-school child traumatic brain injury. Available at; http://www.internationalbrain.org/issues-associated-with-preschool-child-traumatic-brain-injury/retrived05/05/2016.
McKinlay A, Grace R, Horwood L, et al. Prevalence of traumatic brain injury among children, adolescents and young adults: prospective evidence from a birth cohort. Brain Inj. 2008;22:175–81.
Holmes Jr L, Chan W, Jiang Z, Du XL. Effectiveness of androgen deprivation therapy in prolonging survival of older men with locoregional prostate cancer. J Prostate Cancer Prostatic Dis. 2007;10(4):388–95.