Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review
Tóm tắt
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin–liver and intestine–liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Tài liệu tham khảo
Abaci HE, Gledhill K, Guo Z et al (2015) Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip 15:882–888. https://doi.org/10.1039/c4lc00999a
Abaci HE, Coffman A, Doucet Y et al (2018) Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun 9:5301. https://doi.org/10.1038/s41467-018-07579-y
Ahn J, Ahn J-H, Yoon S et al (2019) Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity. J Biol Eng 13:22. https://doi.org/10.1186/s13036-019-0148-5
Alberti M, Dancik Y, Sriram G et al (2017) Multi-chamber microfluidic platform for high-precision skin permeation testing. Lab Chip 17:1625–1634. https://doi.org/10.1039/c6lc01574c
Ardalani H, Sengupta S, Harms V et al (2019) 3-D culture and endothelial cells improve maturity of human pluripotent stem cell-derived hepatocytes. Acta Biomater 95:371–381. https://doi.org/10.1016/j.actbio.2019.07.047
Artursson P, Borchardt RT (1997) Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm Res 14:1655–1658
Azizipour N, Avazpour R, Rosenzweig DH et al (2020) Evolution of biochip technology: a review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 11:599. https://doi.org/10.3390/MI11060599
Azizgolshani H, Coppeta JR, Vedula EM et al (2021) High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip 21:1454–1474. https://doi.org/10.1039/D1LC00067E
Balda MS, Matter K (2008) Tight junctions at a glance. J Cell Sci 121:3677–3682. https://doi.org/10.1242/jcs.023887
Baltazar MT, Cable S, Carmichael PL et al (2020) A next-generation risk assessment case study for coumarin in cosmetic products. Toxicol Sci 176:236–252. https://doi.org/10.1093/toxsci/kfaa048
Bauer S, Wennberg Huldt C, Kanebratt KP et al (2017) Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-14815-w
Beaurivage C, Kanapeckaite A, Loomans C et al (2020) Development of a human primary gut-on-a-chip to model inflammatory processes. Sci Rep 10:21475. https://doi.org/10.1038/s41598-020-78359-2
Beckwitt CH, Clark AM, Wheeler S et al (2018) Liver ‘organ on a chip.’ Exp Cell Res 363:15–25. https://doi.org/10.1016/j.yexcr.2017.12.023
Bein A, Shin W, Jalili-Firoozinezhad S et al (2018) Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol 5:659–668. https://doi.org/10.1016/J.JCMGH.2017.12.010
Bell CC, Hendriks DFG, Moro SML et al (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187. https://doi.org/10.1038/srep25187
Bell CC, Dankers ACA, Lauschke VM et al (2018) Comparison of hepatic 2D sandwich cultures and 3d spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci 162:655–666. https://doi.org/10.1093/toxsci/kfx289
Bell CC, Chouhan B, Andersson LC et al (2020) Functionality of primary hepatic non-parenchymal cells in a 3D spheroid model and contribution to acetaminophen hepatotoxicity. Arch Toxicol 94:1251–1263. https://doi.org/10.1007/s00204-020-02682-w
Berggren E, White A, Ouedraogo G et al (2017) Ab initio chemical safety assessment: a workflow based on exposure considerations and non-animal methods. Comput Toxicol 4:31–44. https://doi.org/10.1016/j.comtox.2017.10.001
Berthier E, Dostie AM, Lee UN et al (2019) Open microfluidic capillary systems. Anal Chem 91:8739. https://doi.org/10.1021/ACS.ANALCHEM.9B01429
Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772. https://doi.org/10.1038/nbt.2989
Bircsak KM, DeBiasio R, Miedel M et al (2021) A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology 450:152667. https://doi.org/10.1016/j.tox.2020.152667
Bock S, Said A, Müller G et al (2018) Characterization of reconstructed human skin containing Langerhans cells to monitor molecular events in skin sensitization. Toxicol in Vitro 46:77–85. https://doi.org/10.1016/j.tiv.2017.09.019
Bovard D, Sandoz A (2019) How to build your multiorgan-on-a-chip system: a case study. In: Hoeng J, Bovard D, Peitsch MC (ed) Organ-on-a-chip: engineered microenvironments for safety and efficacy testing. Elsevier, pp 463–506. https://doi.org/10.1016/B978-0-12-817202-5.00015-2
Brinkmann J, Stolpmann K, Trappe S et al (2013) Metabolically competent human skin models: activation and genotoxicity of benzo[a]pyrene. Toxicol Sci 131:351–359. https://doi.org/10.1093/toxsci/kfs316
Bulutoglu B, Rey-Bedón C, Mert S et al (2020) A comparison of hepato-cellular in vitro platforms to study CYP3A4 induction. PLoS ONE 15:e0229106. https://doi.org/10.1371/JOURNAL.PONE.0229106
Castell JV, Jover R, Martínez-Jiménez CP, Gómez-Lechón MJ (2006) Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol 2:183–212. https://doi.org/10.1517/17425255.2.2.183
Chen HJ, Miller P, Shuler ML (2018) A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells. Lab Chip 18:2036–2046. https://doi.org/10.1039/c8lc00111a
Chong SZ, Evrard M, Ng LG (2013) Lights, camera, and action: vertebrate skin sets the stage for immune cell interaction with arthropod-vectored pathogens. Front Immunol. https://doi.org/10.3389/fimmu.2013.00286
Costa J, Ahluwalia A (2019) Advances and current challenges in intestinal in vitro model engineering: a digest. Front Bioeng Biotechnol 7:144. https://doi.org/10.3389/fbioe.2019.00144
Cristofalo VJ, Lorenzini A, Allen RG et al (2004) Replicative senescence: a critical review. Mech Ageing Dev 125:827–848. https://doi.org/10.1016/j.mad.2004.07.010
Cui Y, Claus S, Schnell D, Runge F, MacLean C (2020) In-depth characterization of epiIntestinal microtissue as a model for intestinal drug absorption and metabolism in human. Pharmaceutics 12:405. https://doi.org/10.3390/pharmaceutics12050405
Curto VF, Marchiori B, Hama A et al (2017) Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsyst Nanoeng 3:17028. https://doi.org/10.1038/micronano.2017.28
D’Arcangelo E, McGuigan AP (2015) Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques 58:13–23. https://doi.org/10.2144/000114245
Davenport M (2017) Surgery of the liver. bile ducts and pancreas in children. Third Edition. John Wiley & Sons Inc, Hoboken, NJ, USA, pp 453–471. https://doi.org/10.1201/9781315113791
De Gregorio V, Corrado B, Sbrescia S et al (2020a) Intestine-on-chip device increases ECM remodeling inducing faster epithelial cell differentiation. Biotechnol Bioeng 117:556–566. https://doi.org/10.1002/bit.27186
De Gregorio V, Telesco M, Corrado B et al (2020b) Intestine-liver axis on-chip reveals the intestinal protective role on hepatic damage by emulating ethanol first-pass metabolism. Front Bioeng Biotechnol 8:163. https://doi.org/10.3389/fbioe.2020.00163
Deng J, Cong Y, Han X et al (2020) A liver-on-a-chip for hepatoprotective activity assessment. Biomicrofluidics 14:064107. https://doi.org/10.1063/5.0024767
Dent M, Amaral RT, Da Silva PA et al (2018) Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput Toxicol 7:20–26. https://doi.org/10.1016/j.comtox.2018.06.001
Ding C, Chen X, Kang Q, Yan X (2020) Biomedical application of functional materials in organ-on-a-chip. Front Bioeng Biotechnol 8:823. https://doi.org/10.3389/FBIOE.2020.00823
Downs TR, Arlt VM, Barnett BC et al (2021) Effect of 2-acetylaminofluorene and its genotoxic metabolites on DNA adduct formation and DNA damage in 3D reconstructed human skin tissue models. Mutagenesis 36:63–74. https://doi.org/10.1093/mutage/gez044
Duivenvoorde LPM, Louisse J, Pinckaers NET et al (2021) Comparison of gene expression and biotransformation activity of HepaRG cells under static and dynamic culture conditions. Sci Rep 11:10327. https://doi.org/10.1038/s41598-021-89710-6
Dutton JS, Hinman SS, Kim R et al (2019) Primary cell-derived intestinal models: recapitulating physiology. Trends Biotechnol 37:744–760. https://doi.org/10.1016/j.tibtech.2018.12.001
Duval K, Grover H, Han L-H et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (bethesda) 32:266–277. https://doi.org/10.1152/physiol.00036.2016
Ehrlich A, Duche D, Ouedraogo G, Nahmias Y (2019) Challenges and opportunities in the design of liver-on-chip microdevices. Annu Rev Biomed Eng 21:219–239. https://doi.org/10.1146/annurev-bioeng-060418-052305
Elzinga J, van der Oost J, de Vos WM, Smidt H (2019) The use of defined microbial communities to model host-microbe interactions in the human gut. Microbiol Mol Biol Rev. https://doi.org/10.1128/mmbr.00054-18
Ertel A, Verghese A, Byers SW et al (2006) Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol Cancer 5:55. https://doi.org/10.1186/1476-4598-5-55
Freag MS, Namgung B, Reyna Fernandez ME et al (2021) Human nonalcoholic steatohepatitis on a chip. Hepatol Commun 5:217–233. https://doi.org/10.1002/HEP4.1647
Frombach J, Sonnenburg A, Krapohl BD et al (2018) Lymphocyte surface markers and cytokines are suitable for detection and potency assessment of skin-sensitizing chemicals in an in vitro model of allergic contact dermatitis: the LCSA-ly. Arch Toxicol 92:1495–1505. https://doi.org/10.1007/s00204-018-2164-5
Ganz T (2000) Paneth cells-guardians of the gut cell hatchery. Nat Immunol 1:99–100. https://doi.org/10.1038/77884
Gauglitz GG, Schauber J (2014) Skin: architecture and function. In: Kamolz LP, Lumenta D (eds) Dermal replacements in general, burn, and plastic surgery: tissue engineering in clinical practice., Springer Vienna, Vienna, pp 1–11. https://doi.org/10.1007/978-3-7091-1586-2_1
Germain L, Larouche D, Nedelec B et al (2018) Autologous bilayered self-assembled skin substitutes (Sasss) as permanent grafts: a case series of 14 severely burned patients indicating clinical effectiveness. Eur Cells Mater 36:128–141. https://doi.org/10.22203/eCM.v036a10
Gibbs S, Corsini E, Spiekstra SW et al (2013) An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicol Appl Pharmacol 272:529–541. https://doi.org/10.1016/j.taap.2013.07.003
Gijzen L, Marescotti D, Raineri E et al (2020) An intestine-on-a-chip model of plug-and-play modularity to study inflammatory processes. SLAS Technol 25:585–597. https://doi.org/10.1177/2472630320924999
Gillet J-P, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105:452–458. https://doi.org/10.1093/jnci/djt007
Gilmour N, Kern PS, Alépée N et al (2020) Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol 116:104721. https://doi.org/10.1016/j.yrtph.2020.104721
Gjorevski N, Lutolf MP (2017) Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc 12:2263–2274. https://doi.org/10.1038/nprot.2017.095
Gjorevski N, Avignon B, Gérard R et al (2020) Neutrophilic infiltration in organ-on-a-chip model of tissue inflammation. Lab Chip 20:3365–3374. https://doi.org/10.1039/d0lc00417k
Gledhill K, Guo Z, Umegaki-Arao N et al (2015) Melanin transfer in human 3D Skin equivalents generated exclusively from induced pluripotent stem cells. PLoS ONE 10:e0136713. https://doi.org/10.1371/journal.pone.0136713
Goyer B, Pereira U, Magne B et al (2019) Impact of ultraviolet radiation on dermal and epidermal DNA damage in a human pigmented bilayered skin substitute. J Tissue Eng Regen Med 13:2300–2311. https://doi.org/10.1002/term.2959
Grant J, Özkan A, Oh C et al (2021) Simulating drug concentrations in PDMS microfluidic organ chips. Lab Chip 21:3509–3519. https://doi.org/10.1039/D1LC00348H
Grassart A, Malardé V, Gobaa S et al (2019) Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection. Cell Host Microbe 26:435-444.e4. https://doi.org/10.1016/j.chom.2019.08.007
Hatherell S, Baltazar MT, Reynolds J et al (2020) Identifying and characterizing stress pathways of concern for consumer safety in next-generation risk assessment. Toxicol Sci 176:11–33. https://doi.org/10.1093/toxsci/kfaa054
Heringa MB, Park MVDZ, Kienhuis AS, Vandebriel RJ (2020) The value of organs-on-chip for regulatory safety assessment. Altex 37:208–222. https://doi.org/10.14573/altex.1910111
Herland A, Maoz BM, Das D et al (2020) Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng 4:421–436. https://doi.org/10.1038/s41551-019-0498-9
Hilgendorf C, Spahn-Langguth H, Regårdh CG et al (2000) Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 89:63–75. https://doi.org/10.1002/(SICI)1520-6017(200001)89:1%3c63::AID-JPS7%3e3.0.CO;2-6
Hinman SS, Kim R, Wang Y et al (2020) Microphysiological system design: simplicity is elegance. Curr Opin Biomed Eng 13:94–102. https://doi.org/10.1016/j.cobme.2019.12.010
Holmgren G, Sjögren AK, Barragan I et al (2014) Long-term chronic toxicity testing using human pluripotent stem cell-derived hepatocytes. Drug Metab Dispos 42:1401–1406. https://doi.org/10.1124/dmd.114.059154
HuDMOP®|IONTOX. https://www.iontox.com/hudmop-multiple-organ-system/. Accessed 11 Jan 2022j
HUMIMIC Chip2—TissUse GmbH. https://www.tissuse.com/en/humimic/chips/humimic-chip2/. Accessed 11 Jan 2022
InSphero AkuraTM flow: transforming drug discovery and development with body-on-a-chip technology|InSphero. https://insphero.com/blog/insphero-akura-flow-transforming-drug-discovery-development-body-chip-technology/. Accessed 13 Aug 2020
Ishibashi H, Nakamura M, Komori A et al (2009) Liver architecture, cell function, and disease. Semin Immunopathol 31:399–409. https://doi.org/10.1007/s00281-009-0155-6
Ishida S (2020) Requirements for designing organ-on-a-chip platforms to model the pathogenesis of liver disease. In: Hoeng J, Bovard D, Peitsch MC (eds) Organ-on-a-chip. Elsevier, pp 181–213. https://doi.org/10.1016/B978-0-12-817202-5.00005-X
Itoh M, Umegaki-Arao N, Guo Z et al (2013) Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE 8:e77673. https://doi.org/10.1371/journal.pone.0077673
Jalili-Firoozinezhad S, Prantil-Baun R, Jiang A et al (2018) Modeling radiation injury-induced cell death and countermeasure drug responses in a human Gut-on-a-Chip. Cell Death Dis 9:223. https://doi.org/10.1038/s41419-018-0304-8
Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL et al (2019) A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng 3:520–531. https://doi.org/10.1038/s41551-019-0397-0
Jang K-J, Otieno MA, Ronxhi J et al (2019a) Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med 11:631002. https://doi.org/10.1126/scitranslmed.aax5516
Jang M, Kleber A, Ruckelshausen T et al (2019b) Differentiation of the human liver progenitor cell line (HepaRG) on a microfluidic-based biochip. J Tissue Eng Regen Med 13:482–494. https://doi.org/10.1002/term.2802
Jellali R, Bricks T, Jacques S et al (2016) Long-term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures. Biopharm Drug Dispos 37:264–275. https://doi.org/10.1002/bdd.2010
Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33. https://doi.org/10.3389/fmolb.2020.00033
Johansson MEV, Hansson GC (2016) Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol 16:639–649. https://doi.org/10.1038/nri.2016.88
Jusoh N, Ko J, Jeon NL (2019) Microfluidics-based skin irritation test using in vitro 3D angiogenesis platform. APL Bioeng 3:036101. https://doi.org/10.1063/1.5093975
Kaarj K, Yoon JY (2019) Methods of delivering mechanical stimuli to Organ-on-a-Chip. Micromachines. https://doi.org/10.3390/mi10100700
Kandarova H, Hayden PJ (2021) Standardised reconstructed skin models in toxicology and pharmacology: state of the art and future development. In: Schäfer-Korting M, Stuchi Maria-Engler S, Landsiedel R (eds) Organotypic models in drug development. Springer International Publishing, Cham, pp 57–71
Kang YB, Eo J, Mert S et al (2018) Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep 8:8951. https://doi.org/10.1038/s41598-018-27179-6
Kasendra M, Tovaglieri A, Sontheimer-Phelps A et al (2018) Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep 8:2871. https://doi.org/10.1038/s41598-018-21201-7
Kasendra M, Luc R, Yin J et al (2020) Duodenum intestine-chip for preclinical drug assessment in a human relevant model. Elife 9:1–23. https://doi.org/10.7554/eLife.50135
Kasuya J, Sudo R, Mitaka T et al (2011) Hepatic stellate cell-mediated three-dimensional hepatocyte and endothelial cell triculture model. Tissue Eng Part A 17:361–370. https://doi.org/10.1089/ten.tea.2010.0033
Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA 113:E7–E15. https://doi.org/10.1073/pnas.1522193112
Kim J, Koo B-K, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584. https://doi.org/10.1038/s41580-020-0259-3
Kohl C (2008) The importance of gut wall metabolism in determining drug bioavailability. In: Mannhold R, Kubinyi H, Folkers G (eds) Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Wiley Blackwell, pp 333–357. https://doi.org/10.1002/9783527623860.ch12
Kondo S, Mizuno S, Hashita T et al (2020) Establishment of a novel culture method for maintaining intestinal stem cells derived from human induced pluripotent stem cells. Biol Open. https://doi.org/10.1242/BIO.049064
Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S (2015) MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol 287:35–42. https://doi.org/10.1016/j.taap.2015.05.017
Kostrzewski T, Cornforth T, Snow SA et al (2017) Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol 23:204–215. https://doi.org/10.3748/wjg.v23.i2.204
Kostrzewski T, Maraver P, Ouro-Gnao L et al (2020) A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun 4:77–91. https://doi.org/10.1002/hep4.1450
Kramer NI, Di Consiglio E, Blaauboer BJ, Testai E (2015) Biokinetics in repeated-dosing in vitro drug toxicity studies. Toxicol in Vitro 30:217–224. https://doi.org/10.1016/j.tiv.2015.09.005
Kühnl J, Tao TP, Brandmair K et al (2021) Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology 448:152637. https://doi.org/10.1016/j.tox.2020.152637
Kulthong K, Duivenvoorde L, Mizera BZ et al (2018) Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners. RSC Adv 8:32440–32453. https://doi.org/10.1039/C8RA05430D
Kulthong K, Duivenvoorde L, Sun H et al (2020) Microfluidic chip for culturing intestinal epithelial cell layers: characterization and comparison of drug transport between dynamic and static models. Toxicol in Vitro 65:104815. https://doi.org/10.1016/j.tiv.2020.104815
Kurth F, Györvary E, Heub S et al (2020) Organs-on-a-chip engineering. In: Hoeng J, Bovard D, Peitsch MC (eds) organ-on-a-chip. Elsevier, pp 47–130. https://doi.org/10.1016/B978-0-12-817202-5.00003-6
Kwak BS, Jin SP, Kim SJ et al (2020) Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue. Biotechnol Bioeng 117:1853–1863. https://doi.org/10.1002/bit.27320
Lasli S, Kim H, Lee K et al (2019) A human liver-on-a-chip platform for modeling nonalcoholic fatty liver disease. Adv Biosyst 3:e1900104. https://doi.org/10.1002/adbi.201900104
Lee SH, Jun BH (2019) Advances in dynamic microphysiological organ-on-a-chip: design principle and its biomedical application. J Ind Eng Chem 71:65–77
Lee CS, Nam G, Bae IH, Park J (2019a) Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes–keratinocytes and three-dimensional human skin equivalent. J Ginseng Res 43:300–304. https://doi.org/10.1016/j.jgr.2017.12.005
Lee SH, Choi N, Sung JH (2019b) Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models. Expert Opin Drug Metab Toxicol 15:1005–1019. https://doi.org/10.1080/17425255.2019.1700950
Leite SB, Roosens T, El Taghdouini A et al (2016) Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78:1–10. https://doi.org/10.1016/j.biomaterials.2015.11.026
Lembong J, Lerman MJ, Kingsbury TJ et al (2018) A fluidic culture platform for spatially patterned cell growth, differentiation, and cocultures. Tissue Eng Part A 24:1715–1732. https://doi.org/10.1089/ten.tea.2018.0020
Li X, George SM, Vernetti L et al (2018) A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18:2614–2631. https://doi.org/10.1039/c8lc00418h
Li F, Cao L, Parikh S, Zuo R (2020) Three-dimensional spheroids with primary human liver cells and differential roles of Kupffer cells in drug-induced liver injury. J Pharm Sci 109:1912–1923. https://doi.org/10.1016/j.xphs.2020.02.021
Liévin-Le Moal V, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19:315–337. https://doi.org/10.1128/CMR.19.2.315-337.2006
Lin DSY, Rajasekar S, Marway MK, Zhang B (2021) From model system to therapy: scalable production of perfusable vascularized liver spheroids in “Open-Top” 384-well plate. ACS Biomater Sci Eng 7:2964–2972. https://doi.org/10.1021/acsbiomaterials.0c00236
Long TJ, Cosgrove PA, Dunn RT et al (2016) Modeling therapeutic antibody-small molecule drug–drug interactions using a three-dimensional perfusable human liver coculture platform. Drug Metab Dispos 44:1940–1948. https://doi.org/10.1124/dmd.116.071456
Low LA, Mummery C, Berridge BR et al (2021) Organs-on-chips: into the next decade. Nat Rev Drug Discov 20:345–361. https://doi.org/10.1038/s41573-020-0079-3
Lu FC, Kacew S (2002) Lu’s basic toxicology: fundamentals, target organs and risk assessment, 4th edn. CRC Press, Taylor & Francis. London. https://doi.org/10.1201/9781003026976
Ma LD, Wang YT, Wang JR et al (2018) Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe: In situ perfusion culture of 3D hepatic spheroids. Lab Chip 18:2547–2562. https://doi.org/10.1039/c8lc00333e
Maass C, Stokes CL, Griffith LG, Cirit M (2017) Multi-functional scaling methodology for translational pharmacokinetic and pharmacodynamic applications using integrated microphysiological systems (MPS). Integr Biol (UK) 9:290–302. https://doi.org/10.1039/c6ib00243a
Madden LR, Nguyen TV, Garcia-Mojica S et al (2018) Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/tox functions. iScience 2:156–167. https://doi.org/10.1016/j.isci.2018.03.015
Mäki A-J, Hemmilä S, Hirvonen J et al (2015) Modeling and experimental characterization of pressure drop in gravity-driven microfluidic systems. J Fluids Eng. https://doi.org/10.1115/1.4028501
Marin TM, de Carvalho IN, Rocco SA et al (2019) Acetaminophen absorption and metabolism in an intestine/liver microphysiological system. Chem Biol Interact 299:59–76. https://doi.org/10.1016/j.cbi.2018.11.010
Martínez-Maqueda D, Miralles B, Recio I (2015) HT29 cell line. Springer International Publishing, Cham
Marx U (2020) Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. Altex 37:365–394. https://doi.org/10.14573/altex.2001241
Maschmeyer I, Hasenberg T, Jaenicke A et al (2015) Chip-based human liver-intestine and liver-skin co-cultures—a first step toward systemic repeated dose substance testing in vitro. Eur J Pharm Biopharm 95:77–87. https://doi.org/10.1016/j.ejpb.2015.03.002
Mastrangeli M, Millet S, Mummery C et al (2019) Building blocks for a European organ-on-chip roadmap. Altex 36:481–492. https://doi.org/10.14573/ALTEX.1905221
Materne E-M, Maschmeyer I, Lorenz AK et al (2015) The multi-organ chip–a microfluidic platform for long-term multi-tissue coculture. J Visual Exp Jove 2015:e52526. https://doi.org/10.3791/52526
Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Deliv Rev 69–70:81–102. https://doi.org/10.1016/j.addr.2013.12.006
McGill MR, Williams CD, Jaeschke H (2015) Liver toxicology. In: Abou-Donia MB (ed) Mammalian toxicology. Wiley, Hoboken, pp 453–471. https://doi.org/10.1002/9781118683484
McGinnity DF, Grime K (2017) ADME optimization in drug discovery. In: Comprehensive medicinal chemistry III. Elsevier, pp 34–44. https://doi.org/10.1016/B978-0-12-409547-2.12365-0
Mehling A, Adriaens E, Casati S et al (2019) In vitro RHE skin sensitisation assays: applicability to challenging substances. Regul Toxicol Pharmacol 108:104473. https://doi.org/10.1016/J.YRTPH.2019.104473
Meier F, Freyer N, Brzeszczynska J et al (2017) Hepatic differentiation of human iPSCs in different 3D models: a comparative study. Int J Mol Med 40:1759–1771. https://doi.org/10.3892/ijmm.2017.3190
Mestecky J, Strober W, Russell MW et al (2015) Mucosal immunology, 4th edn. Elsevier, pp 489-51. https://doi.org/10.1016/B978-0-12-415847-4.00025-2
Moniz T, Costa Lima SA, Reis S (2020) Human skin models: from healthy to disease-mimetic systems; characteristics and applications. Br J Pharmacol 177:4314–4329. https://doi.org/10.1111/BPH.15184
Mori N, Morimoto Y, Takeuchi S (2017) Skin integrated with perfusable vascular channels on a chip. Biomaterials 116:48–56. https://doi.org/10.1016/j.biomaterials.2016.11.031
Mummery C, van Meer B, van den Eijnden-van Raaij J, van de Graaf A (2020) Towards new research models for studying disease and finding treatments. Mini organs-on-chips. Cahier 3. vol 39, Dutch Foundation BWM. pp 21–37
Naito C, Yamaguchi T, Katsumi H et al (2019) Utility of three-dimensional skin from human-induced pluripotent stem cells as a tool to evaluate transdermal drug permeation. J Pharm Sci 108:3524–3527. https://doi.org/10.1016/j.xphs.2019.07.006
Naumovska E, Aalderink G, Wong Valencia C et al (2020) Direct on-chip differentiation of intestinal tubules from induced pluripotent stem cells. Int J Mol Sci 21:4964. https://doi.org/10.3390/ijms21144964
Ng WL, Yeong WY (2019) The future of skin toxicology testing—three-dimensional bioprinting meets microfluidics. Int J Bioprint 5:237. https://doi.org/10.18063/ijb.v5i2.1.237
Nguyen DG, Funk J, Robbins JB et al (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS ONE 11:e0158674. https://doi.org/10.1371/journal.pone.0158674
OECD (2021a) Test guideline no. 498 in vitro phototoxicity: reconstructed human epidermis phototoxicity test method. OECD Guidelines Testing Chem Sect 4:1–27. https://doi.org/10.1787/7b2f9ea0-en
OECD (2021b) Guideline no. 497 guideline on defined approaches for skin sensitisation section 4 health effects. OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/b92879a4-en
OECD (2021c) Test No. 439: in vitro skin irritation: reconstructed human epidermis test method. OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264242845-en
Organ-on-a-chip|Micronit. https://www.micronit.com/products/organ-on-a-chip. Accessed 14 Aug 2020f
Organs-on-Chips Technology—Emulate. https://www.emulatebio.com/our-technology. Accessed 13 Aug 2020
OrganoPlate® 3-lane|Mimetas. https://mimetas.com/page/organoplate®-3-lane. Accessed 11 Aug 2020
Ozawa T, Takayama K, Okamoto R et al (2015) Generation of enterocyte-like cells from human induced pluripotent stem cells for drug absorption and metabolism studies in human small intestine. Sci Rep 5:1–11. https://doi.org/10.1038/srep16479
Petrova A, Capalbo A, Jacquet L et al (2016) Induced pluripotent stem cell differentiation and three-dimensional tissue formation attenuate clonal epigenetic differences in trichohyalin. Stem Cells Dev 25:1366–1375. https://doi.org/10.1089/scd.2016.0156
PhysioMimixTM|CN BIO Innovations. https://cn-bio.com/physiomimixooc/. Accessed 14 Aug 2020
Picollet-D’hahan N, Zuchowska A, Lemeunier I, Le Gac S (2021) Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol 39:788–810. https://doi.org/10.1016/j.tibtech.2020.11.014
Piergiovanni M, Leite SB, Corvi R, Whelan M (2021) Standardisation needs for organ on chip devices. Lab Chip 21:2857–2868. https://doi.org/10.1039/d1lc00241d
Pires De Mello CP, Carmona-Moran C, Mcaleer CW, et al (2020) Lab on a chip microphysiological heart-liver body-on-a-chip system with a skin mimic for evaluating topical drug delivery†. 20:749. https://doi.org/10.1039/c9lc00861f
Poisson J, Lemoinne S, Boulanger C et al (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66:212–227
Products-Bi/ond. https://www.gobiond.com/products/. Accessed 14 Aug 2020
Proença S, Escher BI, Fischer FC et al (2021) Effective exposure of chemicals in in vitro cell systems: a review of chemical distribution models. Toxicol in Vitro 73:105133. https://doi.org/10.1016/J.TIV.2021.105133
Punt A, Bouwmeester H, Blaauboer BJ et al (2020) New approach methodologies (NAMs) for human-relevant biokinetics predictions. Meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. Altex 37:607–622. https://doi.org/10.14573/altex.2003242
Ramadan Q, Ting FCW (2016) In vitro micro-physiological immune-competent model of the human skin. Lab Chip 16:1899–1908. https://doi.org/10.1039/c6lc00229c
Ramaiahgari SC, Ferguson SS (2019) Organotypic 3D HepaRG liver model for assessment of drug-induced cholestasis. Methods Mol Biol 1981:313–323. https://doi.org/10.1007/978-1-4939-9420-5_20
Ramme AP, Koenig L, Hasenberg T et al (2019) Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA 5:413–2056. https://doi.org/10.2144/fsoa-2019-0065
Rao JN, Wang J-Y (2010) Regulation of gastrointestinal mucosal growth. San Rafael (CA): Morgan & Claypool Life Sciences; 2010. Intestinal Architecture and Development. https://www.ncbi.nlm.nih.gov/books/NBK54098/
Reijnders CMA, Van Lier A, Roffel S et al (2015) Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts. Tissue Eng Part A 21:2448–2459. https://doi.org/10.1089/ten.tea.2015.0139
Reisinger K, Blatz V, Brinkmann J et al (2018) Validation of the 3D skin comet assay using full thickness skin models: transferability and reproducibility. Mutat Res 827:27–41. https://doi.org/10.1016/j.mrgentox.2018.01.003
Renggli K, Frey O (2020) Design and engineering of multiorgan systems. Elsevier. pp 393–427. https://doi.org/10.1016/B978-0-12-817202-5.00012-7
Rennert K, Steinborn S, Gröger M et al (2015) A microfluidically perfused three dimensional human liver model. Biomaterials 71:119–131. https://doi.org/10.1016/j.biomaterials.2015.08.043
Risueño I, Valencia L, Jorcano JL, Velasco D (2021) Skin-on-a-chip models: general overview and future perspectives. APL Bioeng 5:1–12. https://doi.org/10.1063/5.0046376
Ronaldson-Bouchard K, Vunjak-Novakovic G (2018) Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22:310–324
Rothbauer M, Zirath H, Ertl P (2018) Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip 18:249–270. https://doi.org/10.1039/C7LC00815E
Rusyn I, Roth A (2021) Editorial overview of the special issue on application of tissue chips in toxicology. Toxicology 450:152687. https://doi.org/10.1016/J.TOX.2021.152687
Sakolish C, Reese CE, Luo YS et al (2021) Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS). Toxicology 448:152651. https://doi.org/10.1016/j.tox.2020.152651
Santbergen MJC, van der Zande M, Gerssen A et al (2020) Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Anal Bioanal Chem 412:1111–1122. https://doi.org/10.1007/s00216-019-02336-6
Schäfer-Korting M, Bock U, Gamer A et al (2006) Reconstructed human epidermis for skin absorption testing: Results of the German prevalidation study. ATLA Altern Lab Anim 34:283–294. https://doi.org/10.1177/026119290603400312
Schellenberger MT, Bock U, Hennen J et al (2019) A coculture system composed of THP-1 cells and 3D reconstructed human epidermis to assess activation of dendritic cells by sensitizing chemicals after topical exposure. Toxicol in Vitro 57:62–66. https://doi.org/10.1016/j.tiv.2019.02.002
Schepers A, Li C, Chhabra A et al (2016) Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip 16:2644–2653. https://doi.org/10.1039/c6lc00598e
Schimek K, Hsu H-H, Boehme M et al (2018) Bioengineering of a full-thickness skin equivalent in a 96-well insert format for substance permeation studies and organ-on-a-chip applications. Bioengineering 5:43. https://doi.org/10.3390/bioengineering5020043
Schmidt FF, Nowakowski S, Kluger PJ (2020) Improvement of a three-layered in vitro skin model for topical application of irritating substances. Front Bioeng Biotechnol 8:388. https://doi.org/10.3389/fbioe.2020.00388
Seiler KM, Bajinting A, Alvarado DM et al (2020) Patient-derived small intestinal myofibroblasts direct perfused physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-60672-5
Sharma R, Young C, Neu J (2010) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 2010:305879. https://doi.org/10.1155/2010/305879
Shin W, Hackley LA, Kim HJ (2020) “Good Fences Make Good Neighbors”: how does the human gut microchip unravel mechanism of intestinal inflammation? Gut Microbes 11:581–586. https://doi.org/10.1080/19490976.2019.1626684
SkinEthic RHE Reconstructed Human Epidermis. https://www.episkin.com/RHE-LC. Accessed 25 Aug 2020
Soenksen LR, Kassis T, Noh M et al (2018) Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing. Lab Chip 18:902–914. https://doi.org/10.1039/c7lc01223c
Song HJ, Lim HY, Chun W et al (2018) Development of 3D skin-equivalent in a pump-less microfluidic chip. J Ind Eng Chem 60:355–359. https://doi.org/10.1016/j.jiec.2017.11.022
Sontheimer-Phelps A, Chou DB, Tovaglieri A et al (2020) Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cmgh 9:507–526. https://doi.org/10.1016/j.jcmgh.2019.11.008
Soto-Gutierrez A, Gough A, Vernetti LA et al (2017) Pre-clinical and clinical investigations of metabolic zonation in liver diseases: the potential of microphysiology systems. Exp Biol Med (maywood) 242:1605–1616. https://doi.org/10.1177/1535370217707731
Sriram G, Alberti M, Dancik Y et al (2018) Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Mater Today 21:326–340. https://doi.org/10.1016/j.mattod.2017.11.002
Sunuwar L, Yin J, Kasendra M et al (2019) Mechanical stimuli affect Escherichia coli heat-stable enterotoxin-cyclic gmp signaling in a human enteroid intestine-chip model downloaded from. https://doi.org/10.1128/IAI.00866-19
Swift B, Pfeifer ND, Brouwer KLR (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446. https://doi.org/10.3109/03602530903491881
Tao TP, Brandmair K, Gerlach S et al (2021) Demonstration of the first-pass metabolism in the skin of the hair dye, 4-amino-2-hydroxytoluene, using the Chip2 skin–liver microphysiological model. J Appl Toxicol. https://doi.org/10.1002/jat.4146
Teimouri A, Yeung P, Agu R (2019) 2D vs. 3D cell culture models for in vitro topical (dermatological) medication testing. In: Mehanna RA (ed) Cell culture. IntechOpen. https://doi.org/10.5772/intechopen.79868
The ParVivoTM Organ-on-Chip Technology|Nortis Bio. https://www.nortisbio.com/pages/technology. Accessed 14 Aug 2020i
The QV900|Ideal for high-content experiments and industrial use|Kirkstall Ltd. https://www.kirkstall.com/QV900/. Accessed 14 Aug 2020
Thélu A, Catoire S, Kerdine-Römer S (2020) Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicol In Vitro 62: https://doi.org/10.1016/j.tiv.2019.104691
Theobald J, Ghanem A, Wallisch P et al (2018) Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater Sci Eng 4:78–89. https://doi.org/10.1021/acsbiomaterials.7b00417
Thomas RS, Bahadori T, Buckley TJ et al (2019) The next generation blueprint of computational toxicology at the US Environmental Protection Agency. Toxicol Sci 169:317. https://doi.org/10.1093/TOXSCI/KFZ058
Torras N, García-Díaz M, Fernández-Majada V, Martínez E (2018) Mimicking epithelial tissues in three-dimensional cell culture models. Front Bioeng Biotechnol 6:197
Tsamandouras N, Chen WLK, Edington CD et al (2017) Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J 19:1499–1512. https://doi.org/10.1208/s12248-017-0122-4
Turner MR, Balu-Iyer SV (2018) Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J Pharm Sci 107:1247–1260. https://doi.org/10.1016/j.xphs.2018.01.007
Underhill GH, Khetani SR (2018) Advances in engineered human liver platforms for drug metabolism studies. Drug Metab Dispos 46:1626–1637. https://doi.org/10.1124/dmd.118.083295
van den Broek LJ, Bergers LIJC, Reijnders CMA, Gibbs S (2017) Progress and future prospectives in skin-on-chip development with emphasis on the use of different cell types and technical challenges. Stem Cell Rev Rep 13:418–429. https://doi.org/10.1007/s12015-017-9737-1
Verma A, Verma M, Singh A (2020) Animal tissue culture principles and applications. In: Singh A (ed) Animal biotechnology. Elsevier, pp 269–293. https://doi.org/10.1016/B978-0-12-811710-1.00012-4
Vernetti LA, Senutovitch N, Boltz R et al (2016) A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med 241:101–114. https://doi.org/10.1177/1535370215592121
Vernetti L, Gough A, Baetz N et al (2017) Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci Rep 7:1–15. https://doi.org/10.1038/srep42296
Wang X, Sun Q, Pei J (2018a) Microfluidic-based 3D engineered microvascular networks and their applications in vascularized microtumor models. Micromachines 9:493. https://doi.org/10.3390/MI9100493
Wang Y, Wang H, Deng P et al (2018b) In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab Chip 18:3606–3616. https://doi.org/10.1039/C8LC00869H
Wnorowski A, Yang H, Wu JC (2019) Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv Drug Deliv Rev 140:3–11
Workman MJ, Gleeson JP, Troisi EJ et al (2018) Enhanced utilization of induced pluripotent stem cell-derived human intestinal organoids using microengineered chips. CMGH 5:669-677.e2. https://doi.org/10.1016/j.jcmgh.2017.12.008
Wu Q, Liu J, Wang X et al (2020) Organ-on-a-chip: recent breakthroughs and future prospects. BioMed Eng Online 19:9. https://doi.org/10.1186/s12938-020-0752-0
Wufuer M, Lee GH, Hur W et al (2016) Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep 6:1–12. https://doi.org/10.1038/srep37471
Xiang Y, Wen H, Yu Y et al (2020) Gut-on-chip: recreating human intestine in vitro. J Tissue Eng 11:204173142096531. https://doi.org/10.1177/2041731420965318
Zhang Y, Zheng L, Tuo J et al (2017a) Analysis of PM2.5-induced cytotoxicity in human HaCaT cells based on a microfluidic system. Toxicol in Vitro 43:1–8. https://doi.org/10.1016/j.tiv.2017.04.018
Zhang YS, Aleman J, Shin SR et al (2017b) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci USA 114:E2293–E2302. https://doi.org/10.1073/pnas.1612906114
Zhang B, Korolj A, Lai BFL, Radisic M (2018) Advances in organ-on-a-chip engineering. Nat Rev Mater 3:257–278. https://doi.org/10.1038/s41578-018-0034-7
Zhang H, Whalley RD, Ferreira AM, Dalgarno K (2020) High throughput physiological micro-models for in vitro pre-clinical drug testing: a review of engineering systems approaches. Progress Biomed Eng 2:022001. https://doi.org/10.1088/2516-1091/ab7cc4
Zhao Y, Kankala RK, Bin WS, Chen AZ (2019) Multi-organs-on-chips: towards long-term biomedical investigations. Molecules 24:675
Zuchowska A, Kwapiszewska K, Chudy M et al (2017) Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system. Electrophoresis 38:1206–1216. https://doi.org/10.1002/elps.201600417