Implementation of the LandTrendr Algorithm on Google Earth Engine
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wulder, 2012, Opening the archive: How free data has enabled the science and monitoring promise of Landsat, Remote Sens. Environ., 122, 2, 10.1016/j.rse.2012.01.010
Zhu, 2017, Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications, ISPRS J. Photogramm. Remote Sens., 130, 370, 10.1016/j.isprsjprs.2017.06.013
Kennedy, 2010, Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms, Remote Sens. Environ., 114, 2897, 10.1016/j.rse.2010.07.008
Kennedy, 2007, Trajectory-based change detection for automated characterization of forest disturbance dynamics, Remote Sens. Environ., 110, 370, 10.1016/j.rse.2007.03.010
Griffiths, 2012, Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania, Remote Sens. Environ., 118, 199, 10.1016/j.rse.2011.11.006
Bartz, K.K., Ford, M.J., Beechie, T.J., Fresh, K.L., Pess, G.R., Kennedy, R.E., Rowse, M.L., and Sheer, M. (2015). Trends in Developed Land Cover Adjacent to Habitat for Threatened Salmon in Puget Sound, Washington, USA. PLoS ONE, 10.
Kennedy, 2015, Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA, Remote Sens. Environ., 166, 271, 10.1016/j.rse.2015.05.005
Kennedy, 2018, An empirical, integrated forest carbon monitoring system, Environ. Res. Lett., 13, 041001, 10.1088/1748-9326/aa9d9e
Schwantes, 2016, Quantifying drought-induced tree mortality in the open canopy woodlands of central Texas, Remote Sens. Environ., 181, 54, 10.1016/j.rse.2016.03.027
Wang, X., Huang, H., Gong, P., Biging, G.S., Xin, Q., Chen, Y., Yang, J., and Liu, C. (2016). Quantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery. Remote Sens., 8.
Schneibel, 2017, Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series, Remote Sens. Environ., 195, 118, 10.1016/j.rse.2017.04.012
Shen, 2017, Spatio-temporal variations in plantation forests’ disturbance and recovery of northern Guangdong Province using yearly Landsat time series observations (1986–2015), Chin. Geogr. Sci., 27, 600, 10.1007/s11769-017-0880-z
Gorelick, 2017, Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18, 10.1016/j.rse.2017.06.031
Zhu, 2012, Object-based cloud and cloud shadow detection in Landsat imagery, Remote Sens. Environ., 118, 83, 10.1016/j.rse.2011.10.028
Homer, 2007, Completion of the 2001 National Land Cover Database for the conterminous United States, Photogramm. Eng. Remote Sens., 73, 337
Lutes, D.C. (2005). Landscape Assessment: Remote Sensing of Severity, the Normalized Burn Ratio, in FIREMON: Fire Effects Monitoring and Inventory System.
Cohen, 2018, A LandTrendr multispectral ensemble for forest disturbance detection, Remote Sens. Environ., 205, 131, 10.1016/j.rse.2017.11.015
Kennedy, 2012, Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan, Remote Sens. Environ., 122, 117, 10.1016/j.rse.2011.09.024