Sự suy giảm của các tế bào gốc nội mô tuần hoàn trong bệnh hội chứng Down

BMC Medical Genomics - Tập 3 Số 1 - 2010
Valerio Costa1, Linda Sommese2, Amelia Casamassimi3, Roberta Colicchio4, Claudia Angelini5, Valentina Marchesano6, Lara Milone7, Bartolomeo Farzati3, Alfonso Giovane7, Carmela Fiorito8, Monica Rienzo3, Marco Picardi9, Bice Avallone6, Massimiliano M. Corsi10, Berardo Sarubbi11, Raffaele Calabrò11, Paola Salvatore12, Alfredo Ciccodicola1, Claudio Napoli3
1Institute of Genetics and Biophysics ''A. Buzzati-Traverso'', IGB-CNR, Naples, Italy
2Section of Microbiology, Department of Experimental Medicine, 1st School of Medicine, Second University of Naples, Naples, Italy
3Department of General Pathology and Excellence Research Center on Cardiovascular Diseases, 1st School of Medicine, Second University of Naples, Naples, Italy
4IRCCS Fondazione SDN, Naples, Italy
5Istituto per le Applicazioni del Calcolo “Mauro Picone” – CNR, Naples, Italy
6Department of Biological Science, University of Naples "Federico II", Naples, Italy
7Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
8IRCCS MultiMedica, Milan, Italy
9Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Naples, Italy
10Institute of General Pathology, Section of Clinical Pathology, Faculty of Medicine, University of Milan, Milan, Italy
11Cardiology Department of Second University of Naples, "Monaldi Hospital", Naples, Italy
12Department of Cellular and Molecular Biology and Pathology "L. Califano" and School of Biotechnological Sciences, University of Naples "Federico II", Naples, Italy

Tóm tắt

Tóm tắt Đặt vấn đề

Sự tăng sinh mạch bệnh lý là một vấn đề quan trọng trong tiến triển của nhiều bệnh lý. Hội chứng Down được giả định là một mô hình bệnh lý chống tăng sinh mạch theo hệ thống, có thể do sự tăng cường biểu hiện các yếu tố điều hòa chống tăng sinh mạch trên nhiễm sắc thể 21. Mục tiêu của nghiên cứu này là làm sáng tỏ một số đặc điểm của các tế bào gốc nội mô tuần hoàn trong bối cảnh của hội chứng này.

Phương pháp

Các tế bào gốc nội mô tuần hoàn từ những người bị ảnh hưởng bởi hội chứng Down đã được tách ra, nuôi cấy in vitro và phân tích bằng kính hiển vi huỳnh quang và kính hiển vi điện tử truyền qua. Phép đo ELISA được thực hiện để đo nồng độ SDF-1α trong huyết tương ở những người mắc hội chứng Down và những người euploid. Hơn nữa, qRT-PCR được sử dụng để định lượng mức độ biểu hiện của gene CXCL12 và thụ thể của nó trong các tế bào gốc. Chức năng của các tế bào gốc Down được đánh giá thông qua độ nhạy cảm với stress oxy hóa do hydroperoxide gây ra bằng cách xét nghiệm BODIPY và độ nhạy cảm chủ yếu đối với nhiễm trùng bởi các tác nhân gây bệnh ở người. Sự biểu hiện khác nhau của các gene quan trọng trong các tế bào gốc Down được đánh giá qua phân tích microarray.

Kết quả

Chúng tôi phát hiện ra sự giảm đáng kể số lượng tế bào gốc ở những người trẻ tuổi mắc hội chứng Down so với những người euploid, có sự gia tăng kích thước tế bào và một số thay đổi hình thái tiêu cực nổi bật. Hơn nữa, bệnh nhân hội chứng Down cũng cho thấy nồng độ SDF-1α trong huyết tương thấp hơn và các tế bào gốc của họ có sự biểu hiện gene mã hóa SDF-1α và thụ thể màng của nó giảm. Chúng tôi còn chứng minh rằng các tế bào gốc của họ nhạy cảm hơn với stress oxy hóa do hydroperoxide gây ra và nhiễm trùng bởi Bartonella henselae. Hơn nữa, chúng tôi quan sát thấy rằng hầu hết các gene biểu hiện khác nhau này thuộc về các con đường tăng sinh mạch, phản ứng miễn dịch và viêm, và rằng các tế bào gốc nhiễm trùng với trisomy 21 có sự rối loạn biểu hiện gene phản ứng miễn dịch rõ rệt hơn so với các tế bào euploid nhiễm trùng.

Kết luận

Dữ liệu của chúng tôi cung cấp bằng chứng cho số lượng giảm và hình dạng biến đổi của các tế bào gốc nội mô trong hội chứng Down, đồng thời cho thấy khả năng nhạy cảm cao hơn với stress oxy hóa và nhiễm trùng tác nhân gây bệnh so với các tế bào euploid, từ đó xác nhận những thiếu hụt về tăng sinh mạch và phản ứng miễn dịch được quan sát ở những người mắc hội chứng Down.

Từ khóa


Tài liệu tham khảo

Wiseman FK, Alford KA, Tybulewicz VL, Fisher EM: Down syndrome--recent progress and future prospects. Hum Mol Genet. 2009, 18: 75-83. 10.1093/hmg/ddp010.

Gillespie KM, Dix RJ, Williams AJ, Newton R, Robinson ZF, Bingley PJ, Gale EA, Shield JP: Islet autoimmunity in children with Down's syndrome. Diabetes. 2006, 55: 3185-3188. 10.2337/db06-0856.

Ugazio AG, Maccario R, Notarangelo LD, Burgio GR: Immunology of Down syndrome: a review. Am J Med Genet Suppl. 1990, 7: 204-212.

Garrison MM, Jeffries H, Christakis DA: Risk of death for children with down syndrome and sepsis. J Pediatr. 2005, 147: 748-752. 10.1016/j.jpeds.2005.06.032.

Folkman J: Angiogenesis: an organizing principle for drug discovery?. Nat Rev Drug Discov. 2007, 6: 273-286. 10.1038/nrd2115.

Hasle H, Clemmensen IH, Mikkelsen M: Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet. 2000, 355: 165-169. 10.1016/S0140-6736(99)05264-2.

Fulcher T, Griffin M, Crowley S, Firth R, Acheson R, O' Meara N: Diabetic retinopathy in Down's syndrome. Br J Ophthalmol. 1998, 82: 407-409. 10.1136/bjo.82.4.407.

Cappelli-Bigazzi M, Santoro G, Battaglia C, Palladino MT, Carrozza M, Russo MG, Pacileo G, Calabrò R: Endothelial cell function in patients with Down's syndrome. Am J Cardiol. 2004, 94: 392-395. 10.1016/j.amjcard.2004.04.047.

FitzPatrick DR, Ramsay J, McGill NI, Shade M, Carothers AD, Hastie ND: Transcriptome analysis of human autosomal trisomy. Hum Mol Genet. 2002, 11: 3249-3256. 10.1093/hmg/11.26.3249.

Mao R, Zielke CL, Zielke HR, Pevsner J: Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics. 2003, 81: 457-467. 10.1016/S0888-7543(03)00035-1.

Li CM, Guo M, Salas M, Schupf N, Silverman W, Zigman WB, Husain S, Warburton D, Thaker H, Tycko B: Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med Genet. 2006, 7: 24-10.1186/1471-2350-7-24.

Sommer CA, Pavarino-Bertelli EC, Goloni-Bertollo EM, Henrique-Silva F: Identification of dysregulated genes in lymphocytes from children with Down syndrome. Genome. 2008, 51: 19-29. 10.1139/G07-100.

Gardiner K: Gene-dosage effects in Down syndrome and trisomic mouse models. Genome Biol. 2004, 5: 244-10.1186/gb-2004-5-10-244.

Antonarakis SE, Epstein CJ: The challenge of Down syndrome. Trends Mol Med. 2006, 12: 473-479. 10.1016/j.molmed.2006.08.005.

Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA: Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007, 109: 1801-1809. 10.1182/blood-2006-08-043471.

Hirschi KK, Ingram DA, Yoder MC: Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008, 28: 1584-1595. 10.1161/ATVBAHA.107.155960.

Zampetaki A, Kirton JP, Xu Q: Vascular Repair by Endothelial Progenitor Cells. Cardiovascular Research. 2008, 78: 413-421. 10.1093/cvr/cvn081.

Krenning G, van Luyn MJ, Harmsen MC: Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. 2009, 15: 180-189. 10.1016/j.molmed.2009.02.001.

Shantsila E, Watson T, Lip GY: Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology. 2007, 49: 741-752. 10.1016/j.jacc.2006.09.050.

Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating andothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research. 2001, 89: e1-7. 10.1161/hh1301.093953.

Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F: Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med. 2009, 13: 454-471. 10.1111/j.1582-4934.2008.00639.x.

Holmes DK, Bates N, Murray M, Ladusans EJ, Morabito A, Bolton-Maggs PH, Johnston TA, Walkenshaw S, Wynn RF, Bellantuono I: Hematopoietic progenitor cell deficiency in fetuses and children affected by Down's syndrome. Exp Hematol. 2006, 34: 1611-1615. 10.1016/j.exphem.2006.10.013.

Diller GP, van Eijl S, Okonko DO, Howard LS, Ali O, Thum T, Wort SJ, Bédard E, Gibbs JS, Bauersachs J, Hobbs AJ, Wilkins MR, Gatzoulis MA, Wharton J: Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation. 2008, 117: 3020-3030. 10.1161/CIRCULATIONAHA.108.769646.

Jablonska B, Ford D, Trisler D, Pessac B: The growth capacity of bone marrow CD34 positive cells in culture is drastically reduced in a murine model of Down syndrome. C R Biol. 2006, 329: 726-732. 10.1016/j.crvi.2006.06.004.

Mantovani A, Sozzani S, Introna M: Endothelial activation by cytokines. Ann N Y Acad Sci. 1997, 832: 93-116. 10.1111/j.1749-6632.1997.tb46240.x.

Salvatore P, Casamassimi A, Sommese L, Fiorito C, Ciccodicola A, Rossiello R, Avallone B, Grimaldi V, Costa V, Rienzo M, Colicchio R, Williams-Ignarro S, Pagliarulo C, Prudente ME, Abbondanza C, Lamberti F, Baroni A, Buommino E, Farzati B, Tufano MA, Ignarro LJ, Napoli C: Detrimental effects of Bartonella henselae are counteracted by L-arginine and nitric oxide in human endothelial progenitor cells. Proc Natl Acad Sci USA. 2008, 105: 9427-9432. 10.1073/pnas.0803602105.

Dehio C: Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol. 2005, 3: 621-631. 10.1038/nrmicro1209.

Kunz S, Oberle K, Sander A, Bogdan C, Schleicher U: Lymphadenopathy in a novel mouse model of Bartonella-induced cat scratch disease results from lymphocyte immigration and proliferation and is regulated by interferon-alpha/beta. Am J Pathol. 2008, 172: 1005-1018. 10.2353/ajpath.2008.070591.

Dogliotti G, Galliera E, Licastro F, Corsi MM: Age-related changes in plasma levels of BDNF in Down syndrome patients. Immun Ageing. 2010, 7: 2-10.1186/1742-4933-7-2.

Casamassimi A, Balestrieri ML, Fiorito C, Schiano C, Maione C, Rossiello R, Grimaldi V, Del Giudice V, Balestrieri C, Farzati B, Sica V, Napoli C: Comparison between total endothelial progenitor cell isolation versus enriched CD133+ culture. J Biochem. 2007, 141: 503-511. 10.1093/jb/mvm060.

Avallone B, Porritiello M, Esposito D, Mutone R, Balsamo G, Marmo F: Evidence for hair cell regeneration in the crista ampullaris of the lizard Podarcis sicula. Hear Res. 2003, 178: 79-88. 10.1016/S0378-5955(03)00040-6.

Costa V, Conte I, Ziviello C, Casamassimi A, Alfano G, Banfi S, Ciccodicola A: Identification and expression analysis of novel Jakmip1 transcripts. Gene. 2007, 402: 1-8. 10.1016/j.gene.2007.07.001.

Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA: Identifying biological themes within lists of genes with EASE. Genome Biol. 2003, 4: R70-10.1186/gb-2003-4-10-r70.

Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57. 10.1038/nprot.2008.211.

Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A: PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003, 13: 2129-2141. 10.1101/gr.772403.

Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmller S: Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood. 2004, 104: 3591-3597. 10.1182/blood-2003-12-4103.

Kirby JE, Nekorchuk DM: Bartonella-associated endothelial proliferation depends on inhibition of apoptosis. Proc Natl Acad Sci USA. 2002, 99: 4656-4661. 10.1073/pnas.072292699.

Pulliainen AT, Dehio C: Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins. Int J Biochem Cell Biol. 2009, 41: 507-510. 10.1016/j.biocel.2008.10.018.

Esposito G, Imitola J, Lu J, De Filippis D, Scuderi C, Ganesh VS, Folkerth R, Hecht J, Shin S, Iuvone T, Chesnut J, Steardo L, Sheen V: Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol Genet. 2008, 17: 440-457. 10.1093/hmg/ddm322.

Lee M, Hyun D, Jenner P, Halliwell B: Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defences: relevance to Down's syndrome and familial amyotrophic lateral sclerosis. J Neurochem. 2001, 76: 957-965. 10.1046/j.1471-4159.2001.00107.x.

De Preter K, Barriot R, Speleman F, Vandesompele J, Moreau Y: Positional gene enrichment analysis of gene sets for high-resolution identification of overrepresented chromosomal regions. Nucleic Acids Res. 2008, 36: e43-10.1093/nar/gkn114.

Hristov M, Wolfgang W, Weber PC: Endothelial progenitor cells mobilization differentiation and homing. Arterioscler Thromb Vasc Biol. 2003, 23: 1185-1189. 10.1161/01.ATV.0000073832.49290.B5.

Egan CG, Lavery R, Caporali F, Fondelli C, Laghi-Pasini F, Dotta F, Sorrentino V: Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia. 2008, 51: 1296-1305. 10.1007/s00125-008-0939-6.

Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM: Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005, 111: 2981-2987. 10.1161/CIRCULATIONAHA.104.504340.

Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T: Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003, 107: 1322-1328. 10.1161/01.CIR.0000055313.77510.22.

Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R, Arenzana-Seisdesdos F, Aicher A, Heeschen C, Fichtlscherer S, Zeiher AM, Dimmeler S: Impaired CXCR4 signaling contributes to the reduced neovascularisation capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res. 2005, 97: 1142-1151. 10.1161/01.RES.0000193596.94936.2c.

Waugh DJ, Wilson C: The interleukin-8 pathway in cancer. Clin Cancer Res. 2008, 14: 6735-6741. 10.1158/1078-0432.CCR-07-4843.

Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ, Wei K, McMaster BE, Wright K, Howard MC, Schall TJ: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 2006, 203: 2201-2213. 10.1084/jem.20052144.

Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, Lensch MW, Park IH, Yoon SS, Minami T, Korenberg JR, Folkman J, Daley GQ, Aird WC, Galdzicki Z, Ryeom S: Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature. 2009, 459: 1126-1130. 10.1038/nature08062.

Scharner D, Rössig L, Carmona G, Chavakis E, Urbich C, Fischer A, Kang TB, Wallach D, Chiang YJ, Deribe YL, Dikic I, Zeiher AM, Dimmeler S: Caspase-8 is involved in neovascularization-promoting progenitor cell functions. Arterioscler Thromb Vasc Biol. 2009, 29: 571-578. 10.1161/ATVBAHA.108.182006.

Wu Y, Alvarez M, Slamon DJ, Koeffler P, Vadgama JV: Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation. BMC Cancer. 2010, 10: 32-10.1186/1471-2407-10-32.

Fiorito C, Rienzo M, Crimi E, Rossiello R, Balestrieri ML, Casamassimi A, Muto F, Grimaldi V, Giovane A, Farzati B, Mancini FP, Napoli C: Antioxidants increase number of progenitor endothelial cells through multiple gene expression pathways. Free Radic Res. 2008, 42: 754-762. 10.1080/10715760802357057.

Zana M, Janka Z, Kálmán J: Oxidative stress: a bridge between Down's syndrome and Alzheimer's disease. Neurobiol Aging. 2007, 28: 648-676. 10.1016/j.neurobiolaging.2006.03.008.

Slonim DK, Koide K, Johnson KL, Tantravahi U, Cowan JM, Jarrah Z, Bianchi DW: Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc Natl Acad Sci USA. 2009, 106: 9425-9429. 10.1073/pnas.0903909106.

Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR: Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007, 6: 975-990. 10.1038/nrd2422.

Rosewicz S, Detjen K, Scholz A, von Marschall Z: Interferon-alpha: regulatory effects on cell cycle and angiogenesis. Neuroendocrinology. 2004, 80: 85-93. 10.1159/000080748.

Ryeom S, Folkman J: Role of Endogenous Angiogenesis Inhibitors in Down Syndrome. J Craniofac Surg. 2009, 20: 595-596. 10.1097/SCS.0b013e3181927f47.

Lyle R, Gehrig C, Neergaard-Henrichsen C, Deutsch S, Antonarakis SE: Gene expression from the aneuploid chromosome in a trisomy mouse model of down syndrome. Genome Res. 2004, 14: 1268-1274. 10.1101/gr.2090904.

Kahlem P, Sultan M, Herwig R, Steinfath M, Balzereit D, Eppens B, Saran NG, Pletcher MT, South ST, Stetten G, Lehrach H, Reeves RH, Yaspo ML: Transcript level alterations reflect gene dosage effects across multiple tissues in a mouse model of down syndrome. Genome Res. 2004, 14: 1258-1267. 10.1101/gr.1951304.