Impact of the Paleoclimate, Paleoenvironment, and Algae Bloom: Organic Matter Accumulation in the Lacustrine Lucaogou Formation of Jimsar Sag, Junggar Basin, NW China
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bradley, 1973, Oil shale formed in desert environment: Green River Formation, Wyoming, Geol. Soc. Am. Bull., 84, 1121, 10.1130/0016-7606(1973)84<1121:OSFIDE>2.0.CO;2
Carroll, 1992, Upper Permian Lacustrine Oil Shales, Southern Junggar Basin, Northwest China (1), AAPG Bull., 76, 1874
Bohacs, 2000, Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic-geochemical framework, Lake Basins Through Space Time Aapg Stud. Geol., 46, 3
Summons, 2008, Origin of Nama Basin bitumen seeps: Petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana, Org. Geochem., 39, 589, 10.1016/j.orggeochem.2007.12.002
Petersen, 2011, Hydrocarbon potential of Middle Jurassic coaly and lacustrine and Upper Jurassic–lowermost Cretaceous marine source rocks in the Søgne Basin, North Sea, J. Pet. Geol., 34, 277, 10.1111/j.1747-5457.2011.00506.x
Ma, 2016, Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: Constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China, Int. J. Coal Geol., 167, 103, 10.1016/j.coal.2016.09.014
Demaison, 1980, Anoxic environments and oil source bed genesis, Org. Geochem., 2, 9, 10.1016/0146-6380(80)90017-0
Calvert, 1987, Oceanographic controls on the accumulation of organic matter in marine sediments, Geol. Soc. Lond. Spec. Publ., 26, 137, 10.1144/GSL.SP.1987.026.01.08
Pedersen, 1990, Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary Rocks?, AAPG Bull., 74, 454
Meyers, 1993, Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments, Org. Geochem., 20, 867, 10.1016/0146-6380(93)90100-P
Murphy, 2000, Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling, Paleoceanography, 15, 280, 10.1029/1999PA000445
2002, Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin, Brazil: Paleolimnological inferences and source rock models, Org. Geochem., 33, 67, 10.1016/S0146-6380(01)00128-0
Bechtel, 2012, Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis, Org. Geochem., 46, 76, 10.1016/j.orggeochem.2012.02.003
Zeng, 2015, Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China, Mar. Pet. Geol., 64, 203, 10.1016/j.marpetgeo.2015.02.031
Cecil, 1990, Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks, Geology, 18, 533, 10.1130/0091-7613(1990)018<0533:PCOSRO>2.3.CO;2
Meyers, 1997, Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213, 10.1016/S0146-6380(97)00049-1
Xie, 2004, Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction, Geochim. Cosmochim. Acta, 68, 2849, 10.1016/j.gca.2003.08.025
Kohn, 2010, Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate, Proc. Natl. Acad. Sci. USA, 107, 19691, 10.1073/pnas.1004933107
Wu, 2018, Paleoenvironment and Controlling Factors of Oligocene Source Rock in the Eastern Deep-Water Area of the Qiongdongnan Basin: Evidences from Organic Geochemistry and Palynology, Energy Fuels, 32, 7423, 10.1021/acs.energyfuels.8b01190
Kipp, 2016, The evolution of Earth’s biogeochemical nitrogen cycle, Earth-Sci. Rev., 160, 220, 10.1016/j.earscirev.2016.07.007
Martinez, 2019, Effects of pH on redox proxies in a Jurassic rift lake: Implications for interpreting environmental records in deep time, Geochim. Cosmochim. Acta, 252, 240, 10.1016/j.gca.2019.03.014
Grant, W., Gerday, C., and Glansdorff, N. (2006). Alkaline Environments and Biodiversity, Eolss Publishers.
Katz, B. (1995). The Green River Shale: An Eocene carbonate lacustrine source rock. Petroleum Source Rocks, Springer.
Cumming, 2012, Re–Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re–Os systematics and paleocontinental weathering, Earth Planet. Sci. Lett., 359, 194, 10.1016/j.epsl.2012.10.012
Johnson, R., Mercier, T., Brownfield, M., and Self, J. (2010). Assessment of In-Place Oil Shale Resources of the Green River Formation, Uinta Basin, Utah and Colorado.
Berg, M.D.V. (2008). Basin-wide Evaluation of the Uppermost Green River Formation’s Oil-shale Resource, Uinta Basin, Utah and Colorado, Utah Geological Survey.
Collister, J.W., and Hayes, J. (1991). A Preliminary Study of the Carbon and Nitrogen Isotopic Biogeochemistry of Lacustrine Sedimentary Rocks from the Green River Formation, Wyoming, Utah, and Colorado.
Kuang, 2012, Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China, Pet. Explor. Dev., 39, 700, 10.1016/S1876-3804(12)60095-0
Zou, 2012, Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance, Acta Pet. Sin., 33, 173
Liang, 2014, Geological features and exploration potential of Permian Tiaohu Formation tight oil, Santanghu Basin, NW China, Pet. Explor. Dev., 41, 616, 10.1016/S1876-3804(14)60073-2
Hu, 2016, Hydrocarbon generation and expulsion characteristics of Lower Permian P1f source rocks in the Fengcheng area, northwest margin, Junggar Basin, NW China: Implications for tight oil accumulation potential assessment, Geol. J., 51, 880, 10.1002/gj.2705
Frogner, 2001, Fertilizing potential of volcanic ash in ocean surface water, Geology, 29, 487, 10.1130/0091-7613(2001)029<0487:FPOVAI>2.0.CO;2
Witham, 2005, Volcanic ash-leachates: A review and recommendations for sampling methods, J. Volcanol. Geotherm. Res., 141, 299, 10.1016/j.jvolgeores.2004.11.010
Kockum, 2006, A diverse ecosystem response to volcanic aerosols, Chem. Geol., 231, 57, 10.1016/j.chemgeo.2005.12.008
Hoffmann, 2012, Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi, Mar. Chem., 132, 28, 10.1016/j.marchem.2012.02.003
Brand, 1986, Reduction of marine phytoplankton reproduction rates by copper and cadmium, J. Exp. Mar. Biol. Ecol., 96, 225, 10.1016/0022-0981(86)90205-4
Paytan, 2009, Toxicity of atmospheric aerosols on marine phytoplankton, Proc. Natl. Acad. Sci. USA, 106, 4601, 10.1073/pnas.0811486106
Duggen, S., Croot, P., Schacht, U., and Hoffmann, L. (2007). Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett., 34.
Langmann, 2010, Volcanic ash as fertiliser for the surface ocean, Atmos. Chem. Phys., 10, 3891, 10.5194/acp-10-3891-2010
Hamme, 2010, Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific, Geophys. Res. Lett., 37, L19604, 10.1029/2010GL044629
Clayton, 1997, Geochemistry of oils from the Junggar basin, northwest China, AAPG Bull. -Am. Assoc. Pet. Geol., 81, 1926
Wang, 2015, Application of charging effects in evaluating storage space of tight reservoirs: A case study from Permian Lucaogou Formation in Jimusar sag, Junggar Basin, NW China, Pet. Explor. Dev., 42, 516, 10.1016/S1876-3804(15)30044-6
Cao, 2017, Geological roles of the siltstones in tight oil play, Mar. Pet. Geol., 83, 333, 10.1016/j.marpetgeo.2017.02.020
Su, 2018, Pore type and pore size distribution of tight reservoirs in the Permian Lucaogou Formation of the Jimsar Sag, Junggar Basin, NW China, Mar. Pet. Geol., 89, 761, 10.1016/j.marpetgeo.2017.11.014
Zhang, 2019, Characterization of lacustrine mixed fine-grained sedimentary rocks using coupled chemostratigraphic-petrographic analysis: A case study from a tight oil reservoir in the Jimusar Sag, Junggar Basin, Mar. Pet. Geol., 99, 453, 10.1016/j.marpetgeo.2018.10.039
Fang, 2005, Characteristics and Evolution of the Composite Petroleum System in Jimsar Depression, Eastern Junggar Basin, Acta Geosci. Sin., 26, 259
Zhang, 2018, Research on the types and genetic mechanisms of tight reservoir in the Lucaogou Formation in Jimusar Sag, Junggar Basin, Nat. Gas. Geosci., 29, 211
Kunag, 2015, Geological characteristics and exploration practice of tight oil of Lucaogou Formation in Jimsar Sag, Xinjiang Pet. Geol., 36, 629
Xi, 2015, Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar sag, Acta Pet. Sin., 36, 1495
Qiu, 2016, Geological characteristics of source rock and reservoir of tight oil and its accumulation mechanism: A case study of Permian Lucaogou Formation in Jimusar sag, Junggar Basin, Pet. Explor. Dev., 43, 1013, 10.1016/S1876-3804(16)30118-5
Qiu, 2016, Lithofacies and organic geochemistry of the Middle Permian Lucaogou Formation in the Jimusar Sag of the Junggar Basin, NW China, J. Pet. Sci. Eng., 140, 97, 10.1016/j.petrol.2016.01.014
Yang, 2017, Reservoir quality and diagenesis of the Permian Lucaogou Formation tight carbonates in Jimsar Sag, Junggar Basin, West China, J. Earth Sci., 28, 1032, 10.1007/s12583-016-0931-6
Standardization Administration of the People’s Republic of China (2010). GB/T 14506.28−2010, Method for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content.
Standardization Administration of the People’s Republic of China (2010). GB/T 14506.30−2010, Method for Chemical Analysis of Silicate Rocks—Part 30: Determination of 44 Elements.
Standardization Administration of the People’s Republic of China (2003). GB/T 19145−2003, Determination of Total Organic Carbon in Sedimentary Rock.
Standardization Administration of the People’s Republic of China (2012). GB/T 18602−2012, Rock Pyrolysis Analysis.
Jarvie, 2012, Shale resource systems for oil and gas: Part 2—Shale-oil resource systems, AAPG Bull., 97, 89
Rudnick, 2003, Composition of the continental crust, Treatise Geochem., 3, 659
Taylor, S.R., and McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution, Blackwell Scientific Publications.
Wright, 1987, Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite, Geochim. Cosmochim. Acta, 51, 631, 10.1016/0016-7037(87)90075-5
Zhao, 2007, Distribution characteristics and applications of trace elements in Junggar Basin, Nat. Gas Explor. Dev., 30, 30
Cao, 2012, Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China, Chem. Der Erde-Geochem., 72, 245, 10.1016/j.chemer.2011.12.002
Moradi, 2016, Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate conditions, source–area weathering, provenance and tectonic setting, Sediment. Geol., 341, 289, 10.1016/j.sedgeo.2016.05.002
Jiang, 1986, Carotenoid-derived alkanes in oils from northwestern China, Org. Geochem., 10, 831, 10.1016/S0146-6380(86)80020-1
Peters, K.E. (2005). The Biomarker Guide, 2, Biomarkers and Isotopes in Petroleum Systems and Earth History, Cambridge University Press.
Neto, 1993, Extended tricyclic terpanes in sediments and petroleums, Org. Geochem., 20, 1039, 10.1016/0146-6380(93)90112-O
Moldowan, 1986, Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany, Org. Geochem., 10, 915, 10.1016/S0146-6380(86)80029-8
Li, 2012, Geochemical features and source analysis of crude oils from the western slope of Bayanhushu Sag, Hailaer Basin, Acta Pet. Sin., 33, 595
Zhang, 2012, Stable carbon isotope compositions of isoprenoid chromans in Cenozoic saline lacustrine source rocks from the Western Qaidam Basin, NW China: Source implications, Chin. Sci. Bull., 57, 1013, 10.1007/s11434-011-4899-8
Schwark, 1998, Geochemical characterization of Malm Zeta laminated carbonates from the Franconian Alb, SW-Germany (II), Org. Geochem., 29, 1921, 10.1016/S0146-6380(98)00192-2
Yangming, 2005, Geochemical characteristics of Tertiary saline lacustrine oils in the Western Qaidam Basin, northwest China, Appl. Geochem., 20, 1875, 10.1016/j.apgeochem.2005.06.003
Wang, 2011, Paleosalinity significance of occurrence and distribution of methyltrimethyltridecyl chromans in the Upper Cretaceous Nenjiang Formation, Songliao Basin, China, Org. Geochem., 42, 1411, 10.1016/j.orggeochem.2011.08.012
Keely, 1993, Variations in abundances and distributions of isoprenoid chromans and long-chain alkylbenzenes in sediments of the Mulhouse Basin: A molecular sedimentary record of palaeosalinity, Org. Geochem., 20, 1201, 10.1016/0146-6380(93)90009-Z
Li, 1995, Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols, Org. Geochem., 23, 159, 10.1016/0146-6380(94)00112-E
Grice, 1998, Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene–Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China, Org. Geochem., 29, 1745, 10.1016/S0146-6380(98)00075-8
Kenig, 1995, Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed, Org. Geochem., 23, 485, 10.1016/0146-6380(95)00049-K
Leavitt, 1994, Trends in stomatal density and 13C/12C ratios of Pinus flexilis needles during last glacial-interglacial cycle, Science, 264, 239, 10.1126/science.264.5156.239
Ficken, 2000, An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes, Org. Geochem., 31, 745, 10.1016/S0146-6380(00)00081-4
Moldowan, 1994, The molecular fossil record of oleanane and its relation to angiosperms, Science, 265, 768, 10.1126/science.265.5173.768
Cao, 2017, Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar sag, Junggar Basin, AAPG Bull., 101, 39, 10.1306/05241614182
Ding, 2017, Depositional environment and factors controlling beta-carotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China, Palaeogeogr. Palaeoclim. Palaeoecol., 485, 833, 10.1016/j.palaeo.2017.07.040
Volkman, 1986, A Review of Sterol Markers for Marine and Terrigenous Organic-Matter, Org. Geochem., 9, 83, 10.1016/0146-6380(86)90089-6
Volkman, 1994, Sterol Biomarkers for Microalgae from the Green Algal Class Prasinophyceae, Org. Geochem., 21, 1211, 10.1016/0146-6380(94)90164-3
Moldowan, 1985, Relationship between petroleum composition and depositional environment of petroleum source rocks, AAPG Bull., 69, 1255
Moldowan, 1986, Structure and Significance of a Novel Rearranged Monoaromatic Steroid Hydrocarbon in Petroleum, Geochim. Cosmochim. Acta, 50, 343, 10.1016/0016-7037(86)90188-2
1996, The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits, Earth-Sci. Rev., 40, 55, 10.1016/0012-8252(95)00049-6
Boyd, 2007, Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions, Science, 315, 612, 10.1126/science.1131669
Dehairs, 1980, Discrete suspended particles of barite and the barium cycle in the open ocean, Earth Planet. Sci. Lett., 49, 528, 10.1016/0012-821X(80)90094-1
Bishop, 1988, The barite-opal-organic carbon association in oceanic particulate matter, Nature, 332, 341, 10.1038/332341a0
Hatch, 1992, Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA, Chem. Geol., 99, 65, 10.1016/0009-2541(92)90031-Y
Jones, 1994, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., 111, 111, 10.1016/0009-2541(94)90085-X
Adams, 1958, Thorium-to-uranium ratios as indicators of sedimentary processes: Example of concept of geochemical facies, AAPG Bull., 42, 387
Algeo, 2009, Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation, Chem. Geol., 268, 211, 10.1016/j.chemgeo.2009.09.001
Tribovillard, 2012, Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography, Chem. Geol., 324, 46, 10.1016/j.chemgeo.2011.09.009
Bacon, 1985, Rare earth elements in the Pacific and Atlantic Oceans, Geochim. Cosmochim. Acta, 49, 1943, 10.1016/0016-7037(85)90089-4
Li, 2017, Origin and Geological Significance of Sedimentary Exhalative Rocks with" Porphyritic" Structures in the Middle Permian Pingdiquan Formation, Eastern Junggar Basin, J. Paleogeography, 19, 211
Ding, 2019, Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation, Jimsar Sag, J. Pet. Sci. Eng., 179, 696, 10.1016/j.petrol.2019.05.004
Liu, 2019, A preliminary study on the relationship between deep-sourced materials and hydrocarbon generation in lacustrine source rocks: An example from the Permian black rock series in Jimusar sag, Junggar Basin, J. Paleogeography, 21, 9