Impact of sub-thalamic nucleus deep brain stimulation on dual tasking gait in Parkinson’s disease

Journal of NeuroEngineering and Rehabilitation - Tập 10 - Trang 1-10 - 2013
Eliraz Seri-Fainshtat1,2, Zvi Israel1, Aner Weiss3, Jeffrey M Hausdorff2,4
1Department of Neurosurgery, Center for Functional & Restorative Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
2Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
3Movement Disorders Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
4Department of Medicine, Harvard Medical School, Boston, USA

Tóm tắt

The beneficial effects of bilateral sub-thalamic nucleus deep brain stimulation on motor function and gait in advanced Parkinson’s disease are established. Less is known about the effect of stimulation on cognitive function and the capacity to walk while dual tasking, an ability that has been related to fall risk. Everyday walking takes place in complex environments that often require multi-tasking. Hence, dual tasking gait performance reflects everyday ambulation as well as gait automaticity. The purpose of this study was to examine the impact of sub-thalamic nucleus deep brain stimulation on dual task walking in patients with advanced Parkinson’s disease. Gait was assessed using a performance-based test and by quantifying single-task and dual task walking conditions in 28 patients with advanced Parkinson’s disease. These tests were conducted in 4 conditions: “OFF” medication, with the stimulator turned on and off, and “ON” medication, with the stimulator turned on and off. A previously validated, computerized neuro-psychological battery assessed executive function, attention and memory “OFF” and “ON” deep brain stimulation, after subjects took their anti-Parkinsonian medications. Stimulation improved motor function and the spatiotemporal parameters of gait (e.g., gait speed) during both single-task and dual task walking conditions. Attention improved, but executive function did not. The dual task effect on gait did not change in response to stimulation. For example, during serial 3 subtractions, gait speed was reduced by -0.20 ± 0.14 m/sec while OFF DBS and OFF meds and by -0.22 ± 0.14 m/sec when the DBS was turned on (p = 0.648). Similarly, ON medication, serial 3 subtractions reduced gait speed by -0.20 ± 0.16 m/sec OFF DBS and by -0.22 ± 0.09 m/sec ON DBS (p = 0.543). Bilateral sub-thalamic nucleus deep brain stimulation improves motor symptoms, certain features of gait and even some aspects of cognitive function. However, stimulation apparently fails to reduce the negative impact of a dual task on walking abilities. These findings provide new insight into the effects of deep brain stimulation on gait during cognitively challenging conditions and everyday walking.

Tài liệu tham khảo

Lozano AM: Deep brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord 2001, 7: 199-203. 10.1016/S1353-8020(00)00057-2 Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz MI: Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 2005, 128: 2240-2249. 10.1093/brain/awh571 Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W: A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006, 355: 896-908. 10.1056/NEJMoa060281 Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, Lang AE, Deuschl G: Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 2006,21(Suppl 14):S290-S304. Bejjani BP, Gervais D, Arnulf I, Papadopoulos S, Demeret S, Bonnet AM, Cornu P, Damier P, Agid Y: Axial parkinsonian symptoms can be improved: the role of levodopa and bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry 2000, 68: 595-600. 10.1136/jnnp.68.5.595 Stolze H, Klebe S, Poepping M, Lorenz D, Herzog J, Hamel W, Schrader B, Raethjen J, Wenzelburger R, Mehdorn HM: Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology 2001, 57: 144-146. 10.1212/WNL.57.1.144 Crenna P, Carpinella I, Rabuffetti M, Rizzone M, Lopiano L, Lanotte M, Ferrarin M: Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson’s disease. Exp Brain Res 2006, 172: 519-532. 10.1007/s00221-006-0360-7 Ferrarin M, Rizzone M, Bergamasco B, Lanotte M, Recalcati M, Pedotti A, Lopiano L: Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson’s disease. Exp Brain Res 2005, 160: 517-527. 10.1007/s00221-004-2036-5 Rocchi L, Chiari L, Cappello A, Gross A, Horak FB: Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson’s disease. Gait Posture 2004, 19: 172-183. 10.1016/S0966-6362(03)00059-6 Woollacott M, Shumway-Cook A: Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002, 16: 1-14. Yogev-Seligmann G, Hausdorff JM, Giladi N: The role of executive function and attention in gait. Mov Disord 2008, 23: 329-342. 10.1002/mds.21720 Yogev-Seligmann G, Hausdorff JM, Giladi N: Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov Disord 2012, 27: 765-770. 10.1002/mds.24963 O’Shea S, Morris ME, Iansek R: Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys Ther 2002, 82: 888-897. Hausdorff JM, Balash J, Giladi N: Effects of cognitive challenge on gait variability in patients with Parkinson’s disease. J Geriatr Psychiatry Neurol 2003, 16: 53-58. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci 2005, 22: 1248-1256. 10.1111/j.1460-9568.2005.04298.x Bloem BR, Grimbergen YA, van Dijk JG, Munneke M: The “posture second” strategy: a review of wrong priorities in Parkinson’s disease. J Neurol Sci 2006, 248: 196-204. 10.1016/j.jns.2006.05.010 Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM: Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci 2011, 66: 234-240. Segev-Jacubovski O, Herman T, Yogev-Seligmann G, Mirelman A, Giladi N, Hausdorff JM: The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Expert Rev Neurother 2011, 11: 1057-1075. 10.1586/ern.11.69 Yogev-Seligmann G, Giladi N, Brozgol M, Hausdorff JM: A training program to improve gait while dual tasking in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil 2012, 93: 176-181. 10.1016/j.apmr.2011.06.005 Canning CG: The effect of directing attention during walking under dual-task conditions in Parkinson’s disease. Parkinsonism Relat Disord 2005, 11: 95-99. Devos D, Defebvre L, Bordet R: Dopaminergic and non-dopaminergic pharmacological hypotheses for gait disorders in Parkinson’s disease. Fundam Clin Pharmacol 2010, 24: 407-421. 10.1111/j.1472-8206.2009.00798.x Hausdorff JM, Gruendlinger L, Scollins L, O’Herron S, Tarsy D: Deep brain stimulation effects on gait variability in Parkinson’s disease. Mov Disord 2009, 24: 1688-1692. 10.1002/mds.22554 Kelly VE, Israel SM, Samii A, Slimp JC, Goodkin R, Shumway-Cook A: Assessing the effects of subthalamic nucleus stimulation on gait and mobility in people with Parkinson disease. Disabil Rehabil 2010, 32: 929-936. 10.3109/09638280903374139 Davis JT, Lyons KE, Pahwa R: Freezing of gait after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Clin Neurol Neurosurg 2006, 108: 461-464. 10.1016/j.clineuro.2005.07.008 Liu W, McIntire K, Kim SH, Zhang J, Dascalos S, Lyons KE, Pahwa R: Bilateral subthalamic stimulation improves gait initiation in patients with Parkinson’s disease. Gait Posture 2006, 23: 492-498. 10.1016/j.gaitpost.2005.06.012 Moreau C, Defebvre L, Destee A, Bleuse S, Clement F, Blatt JL, Krystkowiak P, Devos D: STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology 2008, 71: 80-84. 10.1212/01.wnl.0000303972.16279.46 Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A: Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 2008, 7: 605-614. 10.1016/S1474-4422(08)70114-5 Marconi R, Landi A, Valzania F: Subthalamic nucleus stimulation in Parkinson’s disease. Neurol Sci 2008,29(Suppl 5):S389-S391. Yogev-Seligmann G, Hausdorff JM, Giladi N: The role of executive function and attention in gait. Mov Disord 2008, 23: 329-342. 10.1002/mds.21720 Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB: Gait speed and survival in older adults. JAMA 2011, 305: 50-58. 10.1001/jama.2010.1923 Morris ME, Huxham F, McGinley J, Dodd K, Iansek R: The biomechanics and motor control of gait in Parkinson disease. Clin Biomech (Bristol, Avon) 2001, 16: 459-470. 10.1016/S0268-0033(01)00035-3 Morris ME, Iansek R, Matyas TA, Summers JJ: The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 1994,117(Pt 5):1169-1181. Blin O, Ferrandez AM, Serratrice G: Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J Neurol Sci 1990, 98: 91-97. 10.1016/0022-510X(90)90184-O Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM: Effect of gait speed on gait rhythmicity in Parkinson’s disease: variability of stride time and swing time respond differently. J Neuroeng Rehabil 2005., 2: 10.1186/1743-0003-2-23 Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord 1998, 13: 428-437. Schaafsma JD, Giladi N, Balash Y, Bartels AL, Gurevich T, Hausdorff JM: Gait dynamics in Parkinson’s disease: relationship to Parkinsonian features, falls and response to levodopa. J Neurol Sci 2003, 212: 47-53. 10.1016/S0022-510X(03)00104-7 Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G: Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry 2001, 70: 289-297. 10.1136/jnnp.70.3.289 Gelb DJ, Oliver E, Gilman S: Diagnostic criteria for Parkinson disease. Arch Neurol 1999, 56: 33-39. 10.1001/archneur.56.1.33 Nilsson MH, Tornqvist AL, Rehncrona S: Deep-brain stimulation in the subthalamic nuclei improves balance performance in patients with Parkinson’s disease, when tested without anti-parkinsonian medication. Acta Neurol Scand 2005, 111: 301-308. 10.1111/j.1600-0404.2005.00394.x Piper M, Abrams GM, Marks WJ Jr: Deep brain stimulation for the treatment of Parkinson’s disease: overview and impact on gait and mobility. Neuro Rehabilitation 2005, 20: 223-232. Kave G: Standardization and norms for a Hebrew naming test. Brain Lang 2005, 92: 204-211. 10.1016/j.bandl.2004.06.004 Yogev-Seligmann G, Rotem-Galili Y, Dickstein R, Giladi N, Hausdorff JM: Effects of explicit prioritization on dual task walking in patients with Parkinson’s disease. Gait Posture 2012, 35: 641-646. 10.1016/j.gaitpost.2011.12.016 Fahn S, Elton R: Members of the UPDRS development committee: Unified Parkinson’s disease rating scale. In Recent developments in Parkinson’s disease. Edited by: Goldstein M, Fahn S, Marsden CD, Calne D. Florham Park: NJ: Macmillan Health Care Information; 1987:153-163. Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z: Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain 2010, 133: 2007-2021. 10.1093/brain/awq144 AGS Guidelines: Guideline for the prevention of falls in older persons. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. J Am Geriatr Soc 2001, 49: 664-672. 10.1046/j.1532-5415.2001.49115.x Podsiadlo D, Richardson S: The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991, 39: 142-148. Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N: Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin Neuropharmacol 2006, 29: 15-17. 10.1097/00002826-200601000-00005 Dwolatzky T, Whitehead V, Doniger GM, Simon ES, Schweiger A, Jaffe D, Chertkow H: Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC Geriatr 2003, 3: 4. 10.1186/1471-2318-3-4 Schweiger A, Doniger GM, Dwolatzky T, Jaffe D, Simon ES: Reliability of a novel computerized neuropsychological battery for mild cognitive impairment. Acta Neuropsychologica 2003, 1: 407-413. Springer S, Giladi N, Peretz C, Yogev G, Simon ES, Hausdorff JM: Dual-tasking effects on gait variability: the role of aging, falls, and executive function. Mov Disord 2006, 21: 950-957. 10.1002/mds.20848 Kelly VE, Eusterbrock AJ, Shumway-Cook A: A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis 2012, 2012: 918719. Page D, Jahanshahi M: Deep brain stimulation of the subthalamic nucleus improves set shifting but does not affect dual task performance in Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 198-206. Alberts JL, Voelcker-Rehage C, Hallahan K, Vitek M, Bamzai R, Vitek JL: Bilateral subthalamic stimulation impairs cognitive-motor performance in Parkinson’s disease patients. Brain 2008, 131: 3348-3360. 10.1093/brain/awn238 Nieoullon A: Dopamine and the regulation of cognition and attention. Prog Neurobiol 2002, 67: 53-83. 10.1016/S0301-0082(02)00011-4 Zgaljardic DJ, Borod JC, Foldi NS, Mattis P: A review of the cognitive and behavioral sequelae of Parkinson’s disease: relationship to frontostriatal circuitry. Cogn Behav Neurol 2003, 16: 193-210. 10.1097/00146965-200312000-00001 Caliandro P, Insola A, Scarnati E, Padua L, Russo G, Granieri E, Mazzone P: Effects of unilateral pedunculopontine stimulation on electromyographic activation patterns during gait in individual patients with Parkinson’s disease. J Neural Transm 2011, 118: 1477-1486. 10.1007/s00702-011-0705-7 Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ Jr, Rothlind J, Sagher O, Moy C: Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010, 362: 2077-2091. 10.1056/NEJMoa0907083 Follett KA, Torres-Russotto D: Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson’s disease: which target? Parkinsonism Relat Disord 2012,18(Suppl 1):S165-S167. Zibetti M, Torre E, Cinquepalmi A, Rosso M, Ducati A, Bergamasco B, Lanotte M, Lopiano L: Motor and nonmotor symptom follow-up in parkinsonian patients after deep brain stimulation of the subthalamic nucleus. Eur Neurol 2007, 58: 218-223. 10.1159/000107943 Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS: Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009, 301: 63-73. 10.1001/jama.2008.929 Camicioli R, Majumdar SR: Relationship between mild cognitive impairment and falls in older people with and without Parkinson’s disease: 1-Year Prospective Cohort Study. Gait Posture 2010, 32: 87-91. 10.1016/j.gaitpost.2010.03.013 Lapointe LL, Stierwalt JA, Maitland CG: Talking while walking: cognitive loading and injurious falls in Parkinson’s disease. Int J Speech Lang Pathol 2010, 12: 455-459. 10.3109/17549507.2010.486446 Plotnik M, Giladi N, Dagan Y, Hausdorff JM: Postural instability and fall risk in Parkinson’s disease: impaired dual tasking, pacing, and bilateral coordination of gait during the “ON” medication state. Exp Brain Res 2011, 210: 529-538. 10.1007/s00221-011-2551-0 Hausdorff JM: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci 2007, 26: 555-589. 10.1016/j.humov.2007.05.003 Herman T, Mirelman A, Giladi N, Schweiger A, Hausdorff JM: Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci 2010, 65: 1086-1092. Bloem BR, Hausdorff JM, Visser JE, Giladi N: Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord 2004, 19: 871-884. 10.1002/mds.20115 Duncan RP, Leddy AL, Cavanaugh JT, Dibble LE, Ellis TD, Ford MP, Foreman KB, Earhart GM: Accuracy of fall prediction in Parkinson disease: six-month and 12-month prospective analyses. Parkinsons Dis 2012, 2012: 237673. Foreman KB, Addison O, Kim HS, Dibble LE: Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing. Parkinsonism Relat Disord 2011, 17: 166-171. 10.1016/j.parkreldis.2010.12.007 Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ: Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord 2009, 15: 110-115. 10.1016/j.parkreldis.2008.03.010