Impact of sodium chloride and carbon dioxide on conidial germination and radial growth of Penicillium camemberti

Food Microbiology - Tập 115 - Trang 104309 - 2023
Marion Valle1,2, Nicolas Nguyen Van Long2, Jean-Luc Jany3, Loona Koullen1, Karim Rigalma3, Valérie Vasseur3, Véronique Huchet2, Louis Coroller1
1Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ACTIA 19.03 ALTER’IX, F-29000, Quimper, France
2ADRIA Développement, UMT ACTIA 19.03 ALTER’IX, Quimper, France
3Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ACTIA 19.03 ALTER’IX, F-29280, Plouzané, France

Tài liệu tham khảo

Bahn, 2006, CO2 sensing in fungi and beyond, Curr. Opin. Microbiol., 9, 572, 10.1016/j.mib.2006.09.003 Bahn, 2007, Sensing the environment: lessons from fungi, Nat. Rev. Microbiol., 5, 57, 10.1038/nrmicro1578 Bartnicki-Garcia, 1962, Assimilation of carbon dioxide and morphogenesis of Mucor rouxii, Biochim. Biophys. Acta, 548, 10.1016/0006-3002(62)90314-1 Bartnicki-Garcia, 1962, Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii, BBA - Biochimica et Biophysica Acta, 58, 102, 10.1016/0006-3002(62)90822-3 Bartnicki-Garcia, 1962, Induction of yeast-like development in Mucor by carbon dioxide, J. Bacteriol., 84, 829, 10.1128/jb.84.4.829-840.1962 Casquete, 2018, Physicochemical factors affecting the growth and mycotoxin production of Penicillium strains in a synthetic cheese medium, Lwt, 89, 179, 10.1016/j.lwt.2017.10.053 Couvert, 2017, Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens, Food Microbiol., 68, 89, 10.1016/j.fm.2017.07.003 Dagnas, 2013, Predicting and preventing mold spoilage of food products, J. Food Protect., 76, 538, 10.4315/0362-028X.JFP-12-349 Daniels, 1985, A review of effects of carbon dioxide on microbial growth and food quality, J. Food Protect., 48, 532, 10.4315/0362-028X-48.6.532 Dantigny, 2006, Standardisation of methods for assessing mould germination: a workshop report, Int. J. Food Microbiol., 108, 286, 10.1016/j.ijfoodmicro.2005.12.005 Dantigny, 2011, A new model for germination of fungi, Int. J. Food Microbiol., 146, 176, 10.1016/j.ijfoodmicro.2011.02.022 Dixon, 1989, The inhibition by CO2 of the growth and metabolism of micro‐organisms, J. Appl. Bacteriol., 67, 109, 10.1111/j.1365-2672.1989.tb03387.x Doyon, 1997, The effect of carbon dioxide on the growth of Penicillium camemberti, Microbiol. Aliments, Nutr., 15, 291 Garcia-Gonzalez, 2007, High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future, Int. J. Food Microbiol., 117, 1, 10.1016/j.ijfoodmicro.2007.02.018 Gitterman, 1952, Carbon dioxide fixation into amino acids of penicillium chrysogenum, J. Bacteriol., 64, 223, 10.1128/jb.64.2.223-231.1952 Granger, 1985, Virulence of Cryptococcus neoformans: regulation of capsule synthesis by carbon dioxide, J. Clin. Invest., 76, 508, 10.1172/JCI112000 Guinee, 2017 Hocking, 1986, Effects of water activity and culture age on the glycerol accumulation patterns of five fungi, J. Gen. Microbiol., 132, 269 Homa, 2022, Differential gene expression of mucor lusitanicus under aerobic and anaerobic conditions, Journal of Fungi, 8, 10.3390/jof8040404 Jiménez-Gómez, 2020, Haloadaptative responses of aspergillus sydowii to extreme water deprivation: morphology, compatible solutes, and oxidative stress at nacl saturation, Journal of Fungi, 6, 1, 10.3390/jof6040316 Kalai, 2017, Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of Penicillium camemberti and Penicillium roqueforti conidia, Int. J. Food Microbiol., 240, 124, 10.1016/j.ijfoodmicro.2016.03.024 Khoshgozaran, 2012, Evaluating the effect of modified atmosphere packaging on cheese characteristics: a review, Dairy Sci. Technol., 92, 1, 10.1007/s13594-011-0044-3 Larsen, 1998, Volatile Flavour Production by Penicillium caseifulvum, 6946, 883 Le Bars-Bailly, 1999, Accidents de fabrication dus aux moisissures en fromagerie, Rev. Med. Vet. (Toulouse), 150, 413 Leclercq-Perlat, 2006, Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber, J. Dairy Sci., 89, 3260, 10.3168/jds.S0022-0302(06)72601-7 Leggieri, 2018, Modelling the sporulation of some fungi associated with cheese, at different temperature and water activity regimes, Int. J. Food Microbiol., 278, 52, 10.1016/j.ijfoodmicro.2018.04.023 Leggieri, 2016, Modeling growth and toxin production of toxigenic fungi signaled in cheese under different temperature and water activity regimes, Toxins, 9, 1 Luard, 1982, Accumulation of intracellular solutes by two filamentous fungi in response to growth at low steady state osmotic potential, J. Gen. Microbiol., 128, 2563 Lund, 1998, Penicillium caseifulvum, a new species found on Penicillium roqueforti fermented cheeses, Journal of Food Mycology, 1, 95 Magan, 1984, Effect of temperature and pH on water relations of field and storage fungi, Trans. Br. Mycol. Soc., 82, 71, 10.1016/S0007-1536(84)80213-2 McSweeney, 2004, Biochemistry of cheese ripening, 57, 127 Mitchell, 2005, Fungal CO2 sensing: a breath of fresh Air, Curr. Biol., 15, 934, 10.1016/j.cub.2005.10.064 Molimard, 1996, Review: compounds involved in the flavor of surface mold-ripened cheeses: origins and properties, J. Dairy Sci., 79, 169, 10.3168/jds.S0022-0302(96)76348-8 Nguyen Van Long, 2017, Modelling the effect of water activity reduction by sodium chloride or glycerol on conidial germination and radial growth of filamentous fungi encountered in dairy foods, Food Microbiol., 68, 7, 10.1016/j.fm.2017.06.014 Nguyen Van Long, 2017, Modeling the effect of modified atmospheres on conidial germination of fungi from dairy foods, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.02109 Noble, 1958, Utilization of acetate, pyruvate, and CO2 by Penicillium digitatum, Can. J. Microbiol., 4, 469, 10.1139/m58-050 Pardo, 2006, Effects of water activity and temperature on germination and growth profiles of ochratoxigenic Penicillium verrucosum isolates on barley meal extract agar, Int. J. Food Microbiol., 106, 25, 10.1016/j.ijfoodmicro.2005.07.002 Phillips, 1996, Review: modified atmosphere packaging and its effects on the microbiological quality and safety of produce, Int. J. Food Sci. Technol., 31, 463, 10.1046/j.1365-2621.1996.00369.x Picque, 2006, Effects of atmospheric composition on respiratory behavior, weight loss, and appearance of Camembert-type cheeses during chamber ripening, J. Dairy Sci., 89, 3250, 10.3168/jds.S0022-0302(06)72600-5 Presser, 1997, Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration, Appl. Environ. Microbiol., 63, 2355, 10.1128/aem.63.6.2355-2360.1997 Robinson, 1965 Rodriguez-Aguilera, 2011, Effect of modified atmosphere packaging on quality factors and shelf-life of surface mould ripened cheese: Part I constant temperature, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.), 44, 330, 10.1016/j.lwt.2010.06.015 Ropars, 2020, La domestication des champignons Penicillium du fromage, Comptes Rendus Biol., 343, 155, 10.5802/crbiol.15 Ropars, 2020, Domestication of the emblematic white cheese-making fungus Penicillium camemberti and its diversification into two varieties, Curr. Biol., 30, 10.1016/j.cub.2020.08.082 Rosso, 2001, A cardinal model to describe the effect of water activity on the growth of moulds, Int. J. Food Microbiol., 63, 265, 10.1016/S0168-1605(00)00469-4 Sims, 1986, Effect of carbon dioxide on the growth and form of Candida albicans, J. Med. Microbiol., 22, 203, 10.1099/00222615-22-3-203 Spinnler, 2004, Surface Mould-ripened Cheeses Stretton, 1998, Carbon dioxide as a regulator of gene expression in microorganisms. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 73, 79 Suhr, 2002, Factors affecting growth and pigmentation of Penicillium caseifulvum, J. Dairy Sci., 85, 2786, 10.3168/jds.S0022-0302(02)74365-8 Taniwaki, 2010, Growth and mycotoxin production by fungi in atmospheres containing 80% carbon dioxide and 20% oxygen, Int. J. Food Microbiol., 143, 218, 10.1016/j.ijfoodmicro.2010.08.030 Taniwaki, 2009, Growth and mycotoxin production by food spoilage fungi under high carbon dioxide and low oxygen atmospheres, Int. J. Food Microbiol., 132, 100, 10.1016/j.ijfoodmicro.2009.04.005 Taniwaki, 2001, Growth of fungi and mycotoxin production on cheese under modified atmospheres, Int. J. Food Microbiol., 68, 125, 10.1016/S0168-1605(01)00487-1 Valle, 2022, Impact of water activity on the radial growth of fungi in a dairy environment, Food Res. Int., 157, 10.1016/j.foodres.2022.111247 Van Den Tempel, 2000, Effects of atmospheric conditions, NaCl and pH on growth and interactions between moulds and yeasts related to blue cheese production, Int. J. Food Microbiol., 57, 193, 10.1016/S0168-1605(00)00263-4