Impact of radiatively interactive dust aerosols in the NASA GEOS‐5 climate model: Sensitivity to dust particle shape and refractive index

Journal of Geophysical Research D: Atmospheres - Tập 119 Số 2 - Trang 753-786 - 2014
Peter R. Colarco1,2, E. P. Nowottnick1,3, Cynthia A. Randles1,4, Bingqi Yi5, Ping Yang5, Kyu‐Myong Kim1,6,4, Jamison A. Smith7, Charles Bardeen8
1Atmospheric Chemistry and Dynamics Laboratory, NASA GSFC, Greenbelt, Maryland, USA
2P. R. Colarco,
3NASA Postdoctoral Program, NASA GSFC, Greenbelt, Maryland, USA
4GESTAR/Morgan State University/NASA GSFC, Greenbelt, Maryland, USA
5Department of Atmospheric Sciences, Texas A&M University College Station, Texas, USA
6Climate and Radiation Laboratory, NASA/GSFC, Greenbelt, MD, USA
7Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
8National Center for Atmospheric Research, Boulder Colorado USA

Tóm tắt

Abstract

The radiative effects of Saharan dust aerosols are investigated in the NASA GEOS‐5 atmospheric general circulation model. A sectional aerosol microphysics model (CARMA) is run online in GEOS‐5. CARMA treats the dust aerosol lifecycle, and its tracers are radiatively coupled to GEOS‐5. A series of AMIP‐style simulations are performed, in which input dust optical properties (particle shape and refractive index) are varied. Simulated dust distributions for summertime Saharan dust compare well to observations, with best results found when the most absorbing dust optical properties are assumed. Dust absorption leads to a strengthening of the summertime Hadley cell circulation, increased dust lofting to higher altitudes, and a strengthening of the African easterly jet, resulting in increased dust atmospheric lifetime and farther northward and westward transport. We find a positive feedback of dust radiative forcing on emissions, in contrast with previous studies, which we attribute to our having a relatively strong longwave forcing caused by our simulating larger effective particle sizes. This longwave forcing reduces the magnitude of midday net surface cooling relative to other studies, and leads to a nighttime warming that results in higher nighttime wind speeds and dust emissions. The radiative effects of dust particle shape have only minor impact on transport and emissions, with small (~5%) impact on top of atmosphere shortwave forcing, in line with previous studies, but relatively more pronounced effects on shortwave atmospheric heating and surface forcing (~20% increase in atmospheric forcing for spheroids). Shape effects on longwave heating terms are of order ~10%.

Từ khóa


Tài liệu tham khảo

10.1175/1520-0469(1995)052<1204:AMFPMT>2.0.CO;2

10.1007/s00382‐010‐0898‐8

10.1029/94JD02618

10.5194/acp-7-81-2007

10.1029/2003JD003868

10.1029/2002JD003143

10.5194/acp‐13‐4707‐2013

10.1029/2003JD004067

Chou M. andM. J.Suarez(1994) An efficient thermal infrared radiation parameterization for use in general circulation models Technical Report Series on Global Modeling and Data Assimilation 3 1–98.

Chou M. andM. J.Suarez(1999) A solar radiation parameterization for atmospheric studies Technical Report Series on Global Modeling and Data Assimilation 15 1–51.

Chou M. M. J.Suarez X.‐Z.Liang andM. M. H.Yan(2001) A thermal infrared radiation parameterization for atmospheric studies Technical Report Series on Global Modeling and Data Assimilation 19 1–68.

10.1029/2001JD000903

10.1029/2002JD002658

10.1029/2003JD004248

10.1029/2009JD012820

10.1029/96JD01818

10.1029/2000JD900282

10.1029/2005JD006619

10.1175/BAMS‐85‐3‐353

10.5194/acpd‐11‐12441‐2011

10.5194/acp‐12‐4775‐2012

10.1029/2006GL026408

10.5194/acp‐11‐4587‐2011

10.1016/j.jaerosci.2009.05.001

10.1029/1999GB900059

Gerber H. E.(1985) Relative‐humidity parameterization of the Navy Aerosol Model (NAM) NRL Report 8956 1–16.

10.1029/2002JD002516

10.1029/2000JD000053

10.1016/S1364‐8152(03)00114‐2

10.1029/2003GB002079

10.1029/2011JD017216

10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

10.1016/S0034-4257(98)00031-5

10.5194/acp‐11‐7781‐2011

10.5194/acp‐11‐9659‐2011

IPCC, 2007, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996

10.1029/93JD02334

10.1126/science.1105959

10.1029/2004GL020107

10.1029/2004JD004706

10.1016/j.jqsrt.2003.12.026

10.1029/2000GL012647

10.1007/s00382‐010‐0750‐1

10.5194/acp‐11‐10733‐2011

10.1029/2001JD001253

10.5194/acp-6-1815-2006

10.1016/S0012‐8252(01)00042‐3

10.1073/pnas.1014798108

10.1029/2000JD900327

10.1029/2007GL031538

10.5194/angeo-27-4023-2009

10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2

10.1029/2000JD900839

10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2

10.1029/2010JD014691

10.1029/1999JD900084

10.1146/annurev.marine.010908.163727

10.1029/95JD00690

10.1029/PA005i001p00001

10.1029/2006JD007528

10.1029/2007JD009005

10.1016/j.jaerosci.2010.02.008

10.1029/2004JD004912

10.1029/2003JD004085

10.1029/2005JD005796

10.1016/S0022-4073(98)00008-9

10.1029/95GL00798

10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2

10.1029/2000JD900812

10.5194/acp‐11‐8415‐2011

10.1029/2009JD012692

10.1017/CBO9780511599903

10.1029/2009JD013181

10.1029/2005JD006717

10.1029/2000JD900668

Prospero J. M., 1996, Particle Flux in the Ocean, 19

10.1073/pnas.96.7.3396

Prospero J. M., 1989, Chemical Oceanography, 187

10.1029/2000RG000095

Pruppacher H. R., 1997, Microphysics of Clouds and Precipitation

10.1029/2000JD900047

10.1002/qj.2084

10.1029/2012JD018388

10.1175/WAF‐D‐10‐05025.1

Rienecker M. et al. (2008) The GEOS‐5 data assimilation system—Documentation of version 5.0.1 5.1.0 and 5.2.0 NASA Technical Report Series on Global Modeling and Data Assimilation 27 1–118.

10.1175/JCLI‐D‐11‐00015.1

10.1073/pnas.101122798

10.1016/j.jqsrt.2009.02.013

10.5194/acp‐13‐303‐2013

10.1029/2003GL017371

Shettle E. P. andR. W.Fenn(1979) Models for the aerosols of the lower atmosphere and effects of humidity variation on their optical properties Air Force Geophysics Laboratory Tech. Rep. AFGL‐TR‐79‐0214 pp.94 Hanscom AFB Massachusetts USA.

10.1029/2000GL011599

10.1029/2002GL016189

10.1038/381681a0

10.1029/1998JD200048

10.5194/acp‐10‐10771‐2010

10.1029/2008JD010956

10.1034/j.1600‐0889.1992.t01‐1‐00005.x

10.1029/96JD03437

10.1029/94JD01928

10.1029/95JD03610

10.1029/2001JD000963

10.5194/acp-6-1777-2006

10.1175/1520-0469(1988)045<2123:AMMFAD>2.0.CO;2

10.1111/j.1600-0889.2008.00392.x

10.1016/0004-6981(89)90153-4

10.1029/2009GL041774

10.1175/2010BAMS3009.1

10.1364/AO.19.001505

10.1029/2004GL022295

10.1364/AO.35.006568

10.1016/j.jaerosci.2011.06.008

10.1016/j.jqsrt.2007.01.033

10.1029/2002JD002775

10.1029/2004EO480002

10.1175/MWR3525.1