Impact of occupational environmental stressors on blood pressure changes and on incident cases of hypertension: a 5-year follow-up from the VISAT study

Springer Science and Business Media LLC - Tập 17 - Trang 1-10 - 2018
Samantha Huo Yung Kai1, Jean-Bernard Ruidavets1, Camille Carles2,3, Jean-Claude Marquie4, Vanina Bongard1,5, Damien Leger6, Jean Ferrieres1,7, Yolande Esquirol1,8,9
1UMR1027, INSERM, Université Paul Sabatier Toulouse III, Toulouse, France
2Univ. Bordeaux, INSERM UMR 1219, Equipe EPICENE, Bordeaux, France
3CHU de Bordeaux, Service de Médecine du Travail et pathologie professionnelle, Bordeaux, France
4CLLE, University of Toulouse, CNRS, UT2J, Toulouse, France
5Department of Epidemiology, CHU de Toulouse (Centre Hospitalier Universitaire), Toulouse, France
6Sorbonne Paris Cité, APHP, Hôtel Dieu, Centre du Sommeil et de la Vigilance et EA 7330 VIFASOM, Université Paris Descartes, Paris, France
7Department of Cardiology, CHU de Toulouse (Centre Hospitalier Universitaire), Toulouse, France
8Occupational Health department, CHU-Toulouse, Toulouse, France
9Faculté de médecine, Toulouse, France

Tóm tắt

The role of occupational stressors (OS) on blood pressure (BP) is often suspected, but asserting its impact remains uncertain. Our goal was to evaluate their impact on BP increase and on incident cases of hypertension over a 5-year period. One thousand, one hundred and fifty-six men and women from the French prospective VISAT study were followed up over five-years (T1 to T2). Exposures to a large panel of OS (physical, organizational, psychosocial and employment categories) were collected. Linear and logistic regressions were used to assess associations between OS and T2-T1 SBP difference and incident cases of hypertension. They were performed to determine the role of OS first considered separately, then in combination, in crude and adjusted models for main cardiovascular risk factors (gender, age, education, BMI, lifestyle habits and medical history). For initial SBP level < 130 mmHg, carrying loads, intense noise exposure, working more than 48 h/week, active and high strain tended to be associated with an SBP difference increase, while job recognition was associated with a decrease. After adjustment, only significant associations with job strain and job recognition persisted. For initial SBP level ≥ 130 mmHg, being exposed to an active job strain was positively associated with T2-T1 SBP difference only in unadjusted model. Considering all the OS, the recognition of completed tasks had a major protective role. No impact of OS on incident cases of hypertension was observed. Associations between OS and SBP were observed mainly when initial SBP is within the normal range, and are mainly explained by cardiovascular factors, requiring physician’s particular attention to people exposed to these OS. VISAT study is registered in “LE PORTAIL EPIDEMIOLOGIE – FRANCE- AVIESAN –ID 3666”.

Tài liệu tham khảo

Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. Girard SA, Leroux T, Verreault R, Courteau M, Picard M, Turcotte F, Baril J, Richer O. Cardiovascular disease mortality among retired workers chronically exposed to intense occupational noise. Int Arch Occup Environ Health. 2015;88(1):123–30. Jacobsen HB, Reme SE, Sembajwe G, Hopcia K, Stiles TC, Sorensen G, Porter JH, Marino M, Buxton OM. Work stress, sleep deficiency, and predicted 10-year cardiometabolic risk in a female patient care worker population. Am J Ind Med. 2014;57(8):940–9. Tomei G, Fioravanti M, Cerratti D, Sancini A, Tomao E, Rosati MV, Vacca D, ]Palitti T, Di Famiani M, Giubilati R, et al. Occupational exposure to noise and the cardiovascular system: a meta-analysis. Sci Total Environ. 2010;408(4):681–9. Glozier N, Tofler GH, Colquhoun DM, Bunker SJ, Clarke DM, Hare DL, Hickie IB, Tatoulis J, Thompson DR, Wilson A, et al. Psychosocial risk factors for coronary heart disease. Med J Aust. 2013;199(3):179–80. Gilbert-Ouimet M, Trudel X, Brisson C, Milot A, Vezina M. Adverse effects of psychosocial work factors on blood pressure: systematic review of studies on demand-control-support and effort-reward imbalance models. Scand J Work Environ Health. 2014;40(2):109–32. Esquirol Y, Perret B, Ruidavets JB, Marquie JC, Dienne E, Niezborala M, Ferrieres J. Shift work and cardiovascular risk factors: new knowledge from the past decade. Archives of cardiovascular diseases. 2011;104(12):636–68. Clays E, De Bacquer D, Van Herck K, De Backer G, Kittel F, Holtermann A. Occupational and leisure time physical activity in contrasting relation to ambulatory blood pressure. BMC Public Health. 2012;12:1002. van Kempen EE, Kruize H, Boshuizen HC, Ameling CB, Staatsen BA, de Hollander AE. The association between noise exposure and blood pressure and ischemic heart disease: a meta-analysis. Environ Health Perspect. 2002;110(3):307–17. Virkkunen H, Harma M, Kauppinen T, Tenkanen L. Shift work, occupational noise and physical workload with ensuing development of blood pressure and their joint effect on the risk of coronary heart disease. Scand J Work Environ Health. 2007;33(6):425–34. Diene E, Fouquet A, Esquirol Y. Cardiovascular diseases and psychosocial factors at work. Archives of cardiovascular diseases. 2012;105(1):33–9. Tielemans SM, Geleijnse JM, Menotti A, Boshuizen HC, Soedamah-Muthu SS, Jacobs DR Jr, Blackburn H, Kromhout D. Ten-year blood pressure trajectories, cardiovascular mortality, and life years lost in 2 extinction cohorts: the Minnesota business and professional men study and the Zutphen study. J Am Heart Assoc. 2015;4(3):e001378. Marquie JC, Jansou P, Baracat B, Martinaud C, Gonon O, Niezborala M, Ruidavets JB, Fonds H, Esquirol Y. Aging, health, work overview and methodology of the VISAT prospective study. Trav Humain. 2002;65(3):243–60. Puzserova A, Bernatova I. Blood pressure regulation in stress: focus on nitric oxide-dependent mechanisms. Physiol Res. 2016;65(Supplementum 3):S309–42. de Stampa M, Latouche A, Derriennic F, Monfort C, Touranchet A, Cassou B. The course of physical functional limitations and occupational conditions in a middle-aged working population in France. J Occup Med Toxicol. 2012;7(1):5. Vezina M, Derriennic F, Monfort C. The impact of job strain on social isolation: a longitudinal analysis of French workers. Soc Sci Med. 2004;59(1):29–38. Esquirol Y, Niezborala M, Visentin M, Leguevel A, Gonzalez I, Marquie JC. Contribution of occupational factors to the incidence and persistence of chronic low back pain among workers: results from the longitudinal VISAT study. Occup Environ Med. 2017;74(4):243–51. Marquie JC, Tucker P, Folkard S, Gentil C, Ansiau D. Chronic effects of shift work on cognition: findings from the VISAT longitudinal study. Occup Environ Med. 2015;72(4):258–64. Karasek R, Brisson C, Kawakami N, Houtman I, Bongers P, Amick B. The job content questionnaire (JCQ): an instrument for internationally comparative assessments of psychosocial job characteristics. J Occup Health Psychol. 1998;3(4):322–55. Clays E, Lidegaard M, De Bacquer D, Van Herck K, De Backer G, Kittel F, de Smet P, Holtermann A. The combined relationship of occupational and leisure-time physical activity with all-cause mortality among men, accounting for physical fitness. Am J Epidemiol. 2014;179(5):559–66. Holtermann A, Marott JL, Gyntelberg F, Sogaard K, Suadicani P, Mortensen OS, Prescott E, Schnohr P. Occupational and leisure time physical activity: risk of all-cause mortality and myocardial infarction in the Copenhagen City heart study. A prospective cohort study. BMJ Open. 2012;2(1):e000556. Esquirol Y, Yarnell J, Ferrieres J, Evans A, Ruidavets JB, Wagner A, Dallongeville J, Arveiler D, Ducimetiere P, Amouyel P, et al. Impact of occupational physical activity and related tasks on cardiovascular disease: emerging opportunities for prevention? Int J Cardiol. 2013;168(4):4475–8. Sbihi H, Davies HW, Demers PA. Hypertension in noise-exposed sawmill workers: a cohort study. Occup Environ Med. 2008;65(9):643–6. Chang TY, Hwang BF, Liu CS, Chen RY, Wang VS, Bao BY, Lai JS. Occupational noise exposure and incident hypertension in men: a prospective cohort study. Am J Epidemiol. 2013;177(8):818–25. Chang TY, Su TC, Lin SY, Jain RM, Chan CC. Effects of occupational noise exposure on 24-hour ambulatory vascular properties in male workers. Environ Health Perspect. 2007;115(11):1660–4. Ministère du Travail dlE, de la Formation, professionnelle et du Dialogue Social. Conditions de travail Reprise de l’intensification du travail chez les salariés. DARE, Direction de l’animation de la recherche des études et des statistiques. 2014;049:1–11. Imai T, Kuwahara K, Nishihara A, Nakagawa T, Yamamoto S, Honda T, Miyamoto T, Kochi T, Eguchi M, Uehara A, et al. Association of overtime work and hypertension in a Japanese working population: a cross-sectional study. Chronobiol Int. 2014;31(10):1108–14. Nakanishi N, Yoshida H, Nagano K, Kawashimo H, Nakamura K, Tatara K. Long working hours and risk for hypertension in Japanese male white collar workers. J Epidemiol Community Health. 2001;55(5):316–22. Nakamura K, Sakurai M, Morikawa Y, Miura K, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Nakagawa H. Overtime work and blood pressure in normotensive Japanese male workers. Am J Hypertens. 2012;25(9):979–85.