Tác động của thành phần rừng bản địa đến các cộng đồng nấm trong đất ở một khu rừng hỗn hợp boreal

Springer Science and Business Media LLC - Tập 432 - Trang 345-357 - 2018
Mélissande Nagati1,2, Mélanie Roy1, Sophie Manzi1, Franck Richard3, Annie Desrochers2, Monique Gardes1, Yves Bergeron2
1Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier – CNRS, Toulouse cedex, France
2Chaire industrielle UQAM-UQAT en aménagement forestier durable, Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Canada
3Centre d’Ecologie Fonctionnelle et Evolutive UMR5175, Montpellier cedex 5, France

Tóm tắt

Mặc dù nấm là những yếu tố chính điều khiển chu trình carbon và là những sinh vật ký sinh bắt buộc của cây, nhưng mối liên hệ giữa tương tác thực vật-nấm và những thay đổi trong thảm thực vật cảnh quan hầu như đã bị bỏ qua. Mục đích của nghiên cứu này là kiểm tra xem sự khác biệt địa phương về loài cây chủ yếu có hình thành nên thành phần của các cộng đồng nấm trong đất hay không. Các cộng đồng nấm được mô tả thông qua phương pháp giải trình tự DNA thế hệ tiếp theo. Các mẫu đất hỗn hợp được thu thập tại bốn địa điểm ghép cặp (đại diện bởi một khu rừng bạch dương thuần và một khu rừng thông thuần) và các chất dinh dưỡng trong đất được đo lường. Trong số hơn 1119 OTUs, 31.6% thuộc về lớp Ascomycota trong khi 27.8% là Basidiomycota, 15% là nấm ngoại cộng sinh trong khi 19.7% là nấm phân hủy. Các cộng đồng nấm thể hiện sự thay đổi loài cao giữa các loại rừng thay vì sự khác biệt về sự phong phú của loài. Trong số các yếu tố dự đoán đã thử nghiệm, loài cây chủ yếu giải thích khoảng 11% sự biến đổi của cộng đồng nấm. Độ pH và các chất dinh dưỡng trong đất cũng là những yếu tố dự đoán mạnh mẽ cho các cộng đồng nấm. Nghiên cứu của chúng tôi cho thấy mối tương quan mạnh mẽ giữa loài cây chủ yếu và các cộng đồng nấm ở quy mô địa phương và dấy lên những câu hỏi về tác động của các cộng đồng nấm đối với động lực dinh dưỡng của đất rừng.

Từ khóa

#nấm #cộng đồng nấm trong đất #cây chủ yếu #chu trình carbon #thảm thực vật #nghiên cứu sinh thái

Tài liệu tham khảo

Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jõgeva J, Halapuu S, Põldmaa K, Toots M, Truu J, Larsson K-H, Kõljalg U (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences, PlutoF—a Web Based Workbench for Ecological and Taxonomic Research, with an Online Implementation for Fungal ITS Sequences. Evol Bioinforma 6:189–196. https://doi.org/10.4137/EBO.S6271 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Arbour M-L, Bergeron Y (2011) Effect of increased Populus cover on Abies regeneration in the Picea-feathermoss boreal forest. J Veg Sci 22:1132–1142. https://doi.org/10.1111/j.1654-1103.2011.01314.x Bahram M, Harend H, Tedersoo L (2014) Network perspectives of ectomycorrhizal associations. Fungal Ecol 7:70–77. https://doi.org/10.1016/j.funeco.2013.10.003 Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184. https://doi.org/10.1126/science.aai8212 Bent E, Kiekel P, Brenton R, Taylor DL (2011) Root-associated ectomycorrhizal Fungi shared by various boreal Forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different Fungi with host growth responses. Appl Environ Microbiol 77:3351–3359. https://doi.org/10.1128/AEM.02575-10 Booth MG (2004) Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest: mycorrhizal networks and plant competition. Ecol Lett 7:538–546. https://doi.org/10.1111/j.1461-0248.2004.00605.x Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016) obitools : a unix-inspired software package for DNA metabarcoding. Mol Ecol Resour 16:176–182. https://doi.org/10.1111/1755-0998.12428 Brandt JP, Flannigan MD, Maynard DG, Thompson ID, Volney WJA (2013) An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ Rev 21:207–226. https://doi.org/10.1139/er-2013-0040 Carter MR, Gregorich EG (eds) (2008) Soil sampling and methods of analysis, second edn. Canadian Society of Soil Science. CRC Press, Boca Raton, FL, USA Cavard X, Bergeron Y, Chen HYH, Paré D (2011) Effect of forest canopy composition on soil nutrients and dynamics of the understorey: mixed canopies serve neither vascular nor bryophyte strata. J Veg Sci 22:1105–1119. https://doi.org/10.1111/j.1654-1103.2011.01311.x Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217. https://doi.org/10.1080/01621459.1992.10475194 Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618. https://doi.org/10.1126/science.1231923 Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Can J Bot 84:1509–1519. https://doi.org/10.1139/b06-120 Davey ML, Skogen MJ, Heegaard E, Halvorsen R, Kauserud H, Ohlson M (2017) Host and tissue variations overshadow the response of boreal moss-associated fungal communities to increased nitrogen load. Mol Ecol 26:571–588. https://doi.org/10.1111/mec.13938 Drobyshev I, Gewehr S, Berninger F, Bergeron Y (2013) Species-specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. J Ecol 101:231–242. https://doi.org/10.1111/1365-2745.12007 Environment Canada (2017) Canadian climate normals 1971-2000. Environment Canada, National Meteorological Service, Downsview, ON. Accessed November 2017. http://climate.weatheroffice.gc.ca/climate_normals/index_e.html Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, Erséus C, Gusarov VI, Edwards ME, Johnsen A, Stenøien HK, Hassel K, Kauserud H, Yoccoz NG, Bråthen KA, Willerslev E, Taberlet P, Coissac E, Brochmann C (2012) New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol 21:1821–1833. https://doi.org/10.1111/j.1365-294X.2012.05537.x Fenton NJ, Bergeron Y (2006) Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J Veg Sci 17:65–76. https://doi.org/10.1111/j.1654-1103.2006.tb02424.x Fenton NJ, Bergeron Y (2008) Does time or habitat make old-growth forests species rich? Bryophyte richness in boreal Picea mariana forests. Biol Conserv 141:1389–1399. https://doi.org/10.1016/j.biocon.2008.03.019 Fernandez CW, Nguyen N, Stefański A, Han Y, Hobbie SE, Montgomery RA, Reich PB, Kennedy PG (2017) Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob Change Biol 23(4):1598–1609. https://doi.org/10.1111/gcb.13510 Foudyl-Bey S, Brais S, Drouin P (2016) Litter heterogeneity modulates fungal activity, C mineralization and N retention in the boreal forest floor. Soil Biol Biochem 100:264–275. https://doi.org/10.1016/j.soilbio.2016.06.017 Gagnon R (1989) Maintien après feu de limites abruptes entre des peuplements d’épinettes noires (Picea mariana) et des formations de feuillus intolérants (Populus tremuloides et Betula papyrifera) dans la région du Saguenay–Lac-Saint-Jean (Québec). Nat Can 116:117–124 Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822. https://doi.org/10.1126/science.aaa9092 Hirose D, Hobara S, Matsuoka S, Kato K, Tanabe Y, Uchida M, Kudoh S, Osono T (2016) Diversity and community assembly of moss-associated fungi in ice-free coastal outcrops of continental Antarctica. Fungal Ecol 24:94–101. https://doi.org/10.1016/j.funeco.2016.09.005 Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440. https://doi.org/10.1111/j.1469-8137.2007.02016.x Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. https://doi.org/10.1111/mec.12481 Kyaschenko J, Clemmensen KE, Karltun E, Lindahl BD (2017) Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol Lett 20:1546–1555. https://doi.org/10.1111/ele.12862 Laquerre S, Harvey BD, Leduc A (2011) Spatial analysis of response of trembling aspen patches to clearcutting in black spruce-dominated stands. For Chron 87:77–85. https://doi.org/10.5558/tfc87077-1 Légaré S, Paré D, Bergeron Y (2005) Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 275:207–220. https://doi.org/10.1007/s11104-005-1482-6 Lindahl BO, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling in boreal forests – towards a less `phytocentric’ perspective. Plant Soil 242:123–135. https://doi.org/10.1023/A:1019650226585 Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416. https://doi.org/10.1080/00103628409367568 Messaoud Y, Bergeron Y, Asselin H (2007a) Reproductive potential of balsam fir (Abies balsamea), white spruce (Picea glauca), and black spruce (P. mariana) at the ecotone between mixedwood and coniferous forests in the boreal zone of western Quebec. Am J Bot 94:746–754. https://doi.org/10.3732/ajb.94.5.746 Messaoud Y, Bergeron Y, Leduc A (2007b) Ecological factors explaining the location of the boundary between the mixedwood and coniferous bioclimatic zones in the boreal biome of eastern North America. Glob Ecol Biogeogr 16:90–102. https://doi.org/10.1111/j.1466-8238.2006.00277.x Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed.). Mycorrhizal functioning: an integrative plant-fungal process.Chapman & Hall, London. pp. 357–423 Mucha J, Peay KG, Smith DP, Reich PB, Stefański A, Hobbie SE (2018) Effect of simulated climate warming on the ectomycorrhizal fungal Community of Boreal and Temperate Host Species Growing near Their Shared Ecotonal Range Limits. Microb Ecol 75:348–363. https://doi.org/10.1007/s00248-017-1044-5 Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707. https://doi.org/10.1890/03-0373 Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006 Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and ITS implications for molecular species identification. Evol Bioinformatics Online 4:193–201 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2:4–5. https://cran.r-project. .org/package=vegan Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609 R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.R-project.org/ Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. https://doi.org/10.1139/b04-123 Robitaille A, Saucier J-P (1996) Land district, ecophysiographic units and areas: the landscape mapping of the ministère des ressources naturelles du Québec. In: global to local: ecological land classification. Springer, Dordrecht, pp 127–148 Santalahti M, Sun H, Jumpponen A, Pennanen T, Heinonsalo J (2016) Vertical and seasonal dynamics of fungal communities in boreal scots pine forest soil. FEMS Microbiol Ecol 92:fiw170. https://doi.org/10.1093/femsec/fiw170 Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687. https://doi.org/10.1007/s00248-008-9387-6 Shi L-L, Mortimer PE, Slik JWF, Zou X-M, Xu J, Feng W-T, Qiao L (2014) Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers 64:305–315. https://doi.org/10.1007/s13225-013-0270-5 Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D (2007) Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–1637. https://doi.org/10.1890/06-1795.1 Smith JE, Molina R, Huso MM, Luoma DL, McKay D, Castellano MA, Lebel T, Valachovic Y (2002) Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A. Can J Bot 80:186–204. https://doi.org/10.1139/b02-003 Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. https://doi.org/10.3852/16-042 Taudiere A, Munoz F, Lesne A, Monnet A-C, Bellanger J-M, Selosse M-A, Moreau P-A, Richard F (2015) Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica. Front Plant Sci 6:881. https://doi.org/10.3389/fpls.2015.00881 Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB (2010) Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J For Res 40:1288–1301. https://doi.org/10.1139/X10-081 Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2013) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20. https://doi.org/10.1890/12-1693.1 Tedersoo L, Bahram M, Dickie IA (2014) Does host plant richness explain diversity of ectomycorrhizal fungi? Re-evaluation of Gao et al. (2013) data sets reveals sampling effects. Mol Ecol 23:992–995. https://doi.org/10.1111/mec.12660 Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170. https://doi.org/10.1111/j.1365-294X.2012.05602.x Thormann MN (2006) The role of fungi in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin Heidelberg, pp 101–123 Treseder KK, Bent E, Borneman J, McGuire KL (2014) Shifts in fungal communities during decomposition of boreal forest litter. Fungal Ecol 10:58–69. https://doi.org/10.1016/j.funeco.2013.02.002 Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva PA, Fernández N, Escobar JM, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny PB, Smith ME (2017) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214:913–919. https://doi.org/10.1111/nph.14509 Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447. https://doi.org/10.1111/j.1469-8137.2007.02173.x White, T.J., Bruns TD, Lee SB, Taylor J, AM Innis , H Gelfand D, Sninsky J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, DH Gelfand DH, Sninsky JJ, White TJ (eds). PCR protocols: a guide to methods and applications. Academic Press, New York. pp. 315–322