Tác động của sự biến thiên trong việc định hình giữa các độc giả lên radiomics kết cấu của di căn gan do ung thư đại trực tràng

Francesco Rizzetto1, F. Calderoni2, C. De Mattia2, Arianna Defeudis3, Valentina Giannini3, Simone Mazzetti3, Lorenzo Vassallo4, Silvia Ghezzi5, Andrea Sartore‐Bianchi5, Silvia Marsoni6, Salvatore Siena5, Daniele Regge7, A. Torresin8, Angelo Vanzulli9
1Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
2Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
3Department of Surgical Sciences, University of Turin, via Verdi 8, 10124, Turin, Italy
4Radiology Unit, SS Annunziata Hospital ASLCN1 Cuneo, via Ospedali 14, 12038, Cuneo, Savigliano, Italy
5Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
6Precision Oncology, IFOM – The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
7Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy
8Department of Physics, Università degli Studi di Milano, via Giovanni Celoria 16, 20133, Milan, Italy
9Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20122, Milan, Italy

Tóm tắt

Tóm tắt Đặt vấn đề

Radiomics được kỳ vọng sẽ cải thiện quản lý di căn ung thư đại trực tràng (CRC). Chúng tôi nhằm đánh giá tác động của việc định hìnhlesion ở gan như một nguồn biến thiên lên các đặc trưng radiomic (RF).

Phương pháp

Sau khi được sự phê duyệt của Ủy ban Đạo đức, 70 di căn gan ở 17 bệnh nhân CRC đã được phân đoạn trên các hình ảnh chụp cắt lớp vi tính có tăng cường bởi thuốc tương phản do hai bác sĩ nội trú và được kiểm tra bởi các bác sĩ chẩn đoán hình ảnh có kinh nghiệm. Các RF từ ma trận đồng xuất cấp xám và ma trận độ dài chạy đã được trích xuất từ các vùng quan tâm ba chiều (3D) và hai chiều (2D) lớn nhất. Biến thiên giữa các độc giả được đánh giá bằng hệ số Dice và khoảng cách Hausdorff, trong khi tác động của nó đối với các RF được đánh giá bằng sự thay đổi tương đối trung bình (MRC) và hệ số tương đồng trong nhóm (ICC). Đối với tổn thương chính của mỗi bệnh nhân, một độc giả cũng phân đoạn một ROI tròn trên cùng một hình ảnh được sử dụng cho ROI 2D.

Kết quả

Sự đồng thuận định hình giữa các độc giả tốt nhất được quan sát thấy đối với ROI 2D theo cả hệ số Dice (trung vị 0.85, khoảng giữa 0.78–0.89) và khoảng cách Hausdorff (0.21 mm, 0.14–0.31 mm). So sánh các giá trị RF, MRC dao động trong khoảng 0–752% đối với 2D và 0–1567% đối với 3D. Đối với 24/32 RFs (75%), MRC thấp hơn đối với 2D so với 3D. Một ICC > 0.90 đã được quan sát thấy cho nhiều RF hơn đối với 2D (53%) so với 3D (34%). Chỉ có 2/32 RFs (6%) cho thấy sự biến thiên giữa ROI 2D và ROI tròn cao hơn sự biến thiên giữa các độc giả.

Từ khóa


Tài liệu tham khảo

García-Figueiras R, Baleato-González S, Padhani AR et al (2019) How clinical imaging can assess cancer biology. Insights Imaging 10:28 https://doi.org/10.1186/s13244-019-0703-0

Hassani C, Varghese BA, Nieva J, Duddalwar V (2019) Radiomics in pulmonary lesion imaging. AJR Am J Roentgenol 212:497–504 https://doi.org/10.2214/AJR.18.20623

Ferlay J, Ervik M, Lam F, et al (2019) Global Cancer Observatory: cancer today. http://gco.iarc.fr/today/fact-sheets-cancers.

Vera R, González-Flores E, Rubio C et al (2020) Multidisciplinary management of liver metastases in patients with colorectal cancer: a consensus of SEOM, AEC, SEOR, SERVEI, and SEMNIM. Clin Transl Oncol 22:647–662 https://doi.org/10.1007/s12094-019-02182-z

Van Cutsem E, Cervantes A, Adam R et al (2016) ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 27:1386–1422 https://doi.org/10.1093/annonc/mdw235

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577 https://doi.org/10.1148/radiol.2015151169

Lubner MG, Stabo N, Lubner SJ et al (2015) CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging 40:2331–2337 https://doi.org/10.1007/s00261-015-0438-4

Beckers RCJ, Trebeschi S, Maas M et al (2018) CT texture analysis in colorectal liver metastases and the surrounding liver parenchyma and its potential as an imaging biomarker of disease aggressiveness, response and survival. Eur J Radiol 102:15–21 https://doi.org/10.1016/j.ejrad.2018.02.031

Dohan A, Gallix B, Guiu B et al (2020) Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab. Gut 69:531–539 https://doi.org/10.1136/gutjnl-2018-316407

Rao S-X, Lambregts DMJ, Schnerr RS et al (2016) CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United Eur Gastroenterol J 4:257–263 https://doi.org/10.1177/2050640615601603

Simpson AL, Doussot A, Creasy JM et al (2017) Computed tomography image texture: a noninvasive prognostic marker of hepatic recurrence after hepatectomy for metastatic colorectal cancer. Ann Surg Oncol 24:2482–2490 https://doi.org/10.1245/s10434-017-5896-1

Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762 https://doi.org/10.1038/nrclinonc.2017.141

Fave X, Zhang L, Yang J et al (2016) Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res 5:349–363 https://doi.org/10.21037/tcr.2016.07.11

Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102:1143–1158 https://doi.org/10.1016/j.ijrobp.2018.05.053

Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139 https://doi.org/10.1016/j.ejmp.2017.05.071

Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9:1303–1322 https://doi.org/10.7150/thno.30309

Morin O, Vallières M, Jochems A et al (2018) A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys 102:1074–1082 https://doi.org/10.1016/j.ijrobp.2018.08.032

Kocak B, Durmaz ES, Kaya OK, Ates E, Kilickesmez O (2019) Reliability of single-slice–based 2D CT texture analysis of renal masses: influence of intra- and interobserver manual segmentation variability on radiomic feature reproducibility. AJR Am J Roentgenol 213:377–383 https://doi.org/10.2214/AJR.19.21212

Pavic M, Bogowicz M, Würms X et al (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074 https://doi.org/10.1080/0284186X.2018.1445283

Zhao B, Tan Y, Bell DJ et al (2013) Exploring intra- and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on CT scans reconstructed at different slice intervals. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2013.02.018

Shen C, Liu Z, Guan M et al (2017) 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol 10:886–894 https://doi.org/10.1016/j.tranon.2017.08.007

Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428 https://doi.org/10.1038/srep23428

Ng F, Kozarski R, Ganeshan B, Goh V (2013) Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 82:342–348 https://doi.org/10.1016/j.ejrad.2012.10.023

Qiu Q, Duan J, Duan Z et al (2019) Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg 9:453–464 https://doi.org/10.21037/qims.2019.03.02

Yamashita R, Perrin T, Chakraborty J et al (2020) Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. Eur Radiol 30:195–205 https://doi.org/10.1007/s00330-019-06381-8

Owens CA, Peterson CB, Tang C et al (2018) Lung tumor segmentation methods: impact on the uncertainty of radiomics features for non-small cell lung cancer. PLoS One 13:e0205003 https://doi.org/10.1371/journal.pone.0205003

Liu R, Elhalawani H, Radwan Mohamed AS et al (2020) Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin Transl Radiat Oncol 21:11–18 https://doi.org/10.1016/j.ctro.2019.11.005

(2017) Evaluation of trastuzumab in combination with lapatinib or pertuzumab in combination with trastuzumab-emtansine to treat patients with HER2-positive metastatic colorectal cancer (HERACLES). https://clinicaltrials.gov/ct2/show/record/NCT03225937

Sartore-Bianchi A, Martino C, Lonardi S et al (2019) LBA35Phase II study of pertuzumab and trastuzumab-emtansine (T-DM1) in patients with HER2-positive metastatic colorectal cancer: the HERACLES-B (HER2 amplification for colo-rectal cancer enhanced stratification, cohort B) trial. Ann Oncol. https://doi.org/10.1093/annonc/mdz394.024

Lincke T, Zech CJ (2017) Liver metastases: detection and staging. Eur J Radiol 97:76–82 https://doi.org/10.1016/j.ejrad.2017.10.016.

Court LE, Fave X, Mackin D, Lee J, Yang J, Zhang L (2016) Computational resources for radiomics. Transl Cancer Res 5:340–348 https://doi.org/10.21037/tcr.2016.06.17

Perrin T, Midya A, Yamashita R et al (2018) Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY) 43:3271–3278 https://doi.org/10.1007/s00261-018-1600-6

Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE (2015) Ibex: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. https://doi.org/10.1118/1.4908210

Defeudis A, De Mattia C, Rizzetto F et al (2020) Standardization of CT radiomics features for multi-center analysis: impact of software settings and parameters. Phys Med Biol 65:195012 https://doi.org/10.1088/1361-6560/ab9f61

van Rossum PSN, Xu C, Fried DV, Goense L, Court LE, Lin SH (2016) The emerging field of radiomics in esophageal cancer: current evidence and future potential. Transl Cancer Res 5:410–423 https://doi.org/10.21037/tcr.2016.06.19

Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G (2012) SlicerRT: radiation therapy research toolkit for 3D Slicer. Med Phys 39:6332–6338 https://doi.org/10.1118/1.4754659

Bogoya J, Vargas A, Cuate O, Schütze O (2018) A (p,q)-averaged Hausdorff distance for arbitrary measurable sets. Math Comput Appl 23:51. https://doi.org/10.3390/mca23030051

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302 https://doi.org/10.2307/1932409

Evans JD (1996) Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co, Belmont, CA, US

Zwanenburg A, Leger S, Agolli L et al (2019) Assessing robustness of radiomic features by image perturbation. Sci Rep 9:614 https://doi.org/10.1038/s41598-018-36938-4

Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163 https://doi.org/10.1016/j.jcm.2016.02.012

Moghbel M, Mashohor S, Mahmud R, Saripan MI Bin (2016) Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring. EXCLI J 15:406–423. https://doi.org/10.17179/excli2016-402

Bilic P, Christ PF, Vorontsov E, et al (2019) The liver tumor segmentation benchmark (LiTS). 1–43 arXiv:1901.04056. Available via https://arxiv.org/abs/1901.04056

Bellon MR, Siddiqui MS, Ryu S, Chetty IJ (2014) The effect of longitudinal CT resolution and pixel size (FOV) on target delineation and treatment planning in stereotactic radiosurgery. J Radiosurg SBRT 3:149–163

Moskowitz CS, Hricak H, Zabor EC et al (2013) Intra- and interobserver variability in CT measurements in oncology. Radiology 269:451–459 https://doi.org/10.1148/radiol.13122665

Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248 https://doi.org/10.1016/j.mri.2012.06.010

Zwanenburg A, Leger S, Agolli L et al (2019) Assessing robustness of radiomic features by image perturbation. Sci Rep 9:1–10 https://doi.org/10.1038/s41598-018-36938-4