Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress
Tóm tắt
Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. Flow shear stress corresponding to the minimum flow rates in a cardiac cycle had slightly better correlation with WTI, compared to FSS corresponding to maximum flow rates. Choice of maximum or minimum flow rates had no impact on PWS correlations. Advanced plaque progression correlated positively with flow shear stress and negatively with plaque wall stress using follow-up scans. Correlation results using FSS at the baseline scan were inconclusive.
Tài liệu tham khảo
Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF: Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 1987, 68: 27–33. 10.1016/0021-9150(87)90090-6
Friedman MH: Arteriosclerosis research using vascular flow models: from 2-D branches to compliant replicas. J Biomech Eng 1993, 115: 595–601. 10.1115/1.2895546
Ku DN, Giddens DP, Zarins CK, Glagov S: Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 1985, 5: 293–302. 10.1161/01.ATV.5.3.293
Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH: Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 1993, 13(2):310–5. 10.1161/01.ATV.13.2.310
Giddens DP, Zarins CK, Glagov S: The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 1993, 115: 588–594. 10.1115/1.2895545
Nerem RM: Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng 1992, 114: 274–282. 10.1115/1.2891384
Suo J, Oshinski JN, Giddens DP: Blood flow patterns in the proximal human coronary arteries: relationship to atherosclerotic plaque occurrence. Mol Cell Biomech 2008, 5(1):9–18.
Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO, Fuster V, Badimon JJ: Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol 2005, 45(6):846–854. 10.1016/j.jacc.2004.12.026
Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C: A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. J Biomech 2008, 41(4):727–736. 10.1016/j.jbiomech.2007.11.026
Yang C, Canton G, Yuan C, Ferguson M, Hatsukami TS, Tang D: Advanced human carotid plaque progression correlates positively with flow shear stress: an in vivo MRI multi-patient 3D FSI study. J Biomechanics 2010, 43(13):2530–2538. 10.1016/j.jbiomech.2010.05.018
Bathe KJ: Theory and Modeling Guide, Vol I: ADINA; Vol II: ADINA-F, ADINA R&D, Inc., Watertown, MA. 2002.
Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT: The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001, 103: 1051–1056.
Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C: 3D MRI-based multicomponent fsi models for atherosclerotic plaques. Ann Biomed Eng 2004, 32: 947–960.
Tang D, Teng Z, Canton G, Yang C, Ferguson M, Huang X, Zheng J, Woodard PK, Yuan C: Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study. Stroke 2009, 40(10):3258–63. 10.1161/STROKEAHA.109.558676
Teng Z, Canton G, Yuan C, Ferguson M, Yang C, Huang X, Zheng J, Woodard PK, Tang D: 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: An in vivo MRI-based 3D FSI study. J Biomech Eng 2010, 132(3):031007. 10.1115/1.4001028
Holzapfel GA, Stadler M, Schulze-Bause CAJ: A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng 2002, 30(6):753–767.
Ku DN: Blood flow in arteries. Annu Rev Fluid Mech 1997, 29: 399–434. 10.1146/annurev.fluid.29.1.399