Impact of diuretics on the urate lowering therapy in patients with gout: analysis of an inception cohort
Tóm tắt
Diuretics have been associated with impaired response and refractoriness in gout, but whether this effect is still present with new urate-lowering drugs (ULD) and treat-to-target strategies is unknown. The aim of the present study was to assess the impact of the diuretics on the response to ULD in patients with gout. This was a retrospective analysis of an inception cohort. Participants were classified according to the type of ULD prescribed. We analysed the maximal dose of ULD (primary outcome variable), serum urate (SU) reduction, and the achievement of different SU targets (6 mg/dL, 5 mg/dL, and 4 mg/dL), according to the type of ULD prescribed and use of diuretics (loop and/or thiazide). We adjusted for confounders using multiple linear regression analysis. We included 245 patients: 208 treated with allopurinol (66 on diuretics, 31.7%), 35 with febuxostat (19 on diuretics, 57.6%), and 2 with benzbromarone. Significantly fewer participants in the allopurinol plus diuretics subgroup achieved SU levels of less than 5 mg/dL, but we found no other significant differences in SU targets associated with diuretics. Regarding the maximum ULD dose, a simple linear regression suggested an inverse relationship with diuretics (beta = − 0.125, p = 0.073), but this did not hold in the multivariable analysis (beta = − 0.47, p = 0.833). There was no association with febuxostat (beta = − 0.116, p = 0.514). Diuretics do not appear to have a significant impact on managing gout.
Tài liệu tham khảo
Roddy E, Choi HK. Epidemiology of gout. Rheum Dis Clin N Am. 2014;40:155–75.
Scire CA, Manara M, Cimmino MA, et al. Gout impacts on function and health-related quality of life beyond associated risk factors and medical conditions: results from the KING observational study of the Italian Society for Rheumatology (SIR). Arthritis Res Ther. 2013;15:R101.
Clarson LE, Chandrate P, Hider SL, et al. Increased cardiovascular mortality associated with gout: a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22:335–43.
Jackson R, Shiozawa A, Buysman EK, Altan A, Korrer S, Choi H. Flare frequency, healthcare resource utilisation and costs among patients with gout in a managed care setting: a retrospective medical claims-based analysis. BMJ Open. 2015;5:e007214.
Richette P, Doherty M, Pascual E, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017;76:29–42.
Pascual E, Perdiguero M. Gout, diuretics and the kidney. Ann Rheum Dis. 2006;65:981–2.
Richette P, Clerson P, Perissin L, Flipo RM, Bardin T. Revisiting comorbidities in gout: a cluster analysis. Ann Rheum Dis. 2015;74:142–7.
Vargas-Santos AB, Neogi T. Management of gout and hyperuricemia in CKD. Am J Kidney Dis. 2017;70(3):422–39.
Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 2017;15:123.
Wright DF, Duffull SB, Merriman TR, Dalbeth N, Barclay ML, Stamp LK. Predicting allopurinol response in patients with gout. Br J Clin Pharmacol. 2016;81:277–89.
Kiltz U, Smolen J, Bardin T. Treat-to-target (T2T) recommendations for gout. Ann Rheum Dis. 2017;76:632–8.
Andrés M, Bernal JA, Quilis N, Sivera F, Carmona L, Vela P, Pascual E. Cardiovascular risk of gout patients seen at rheumatology clinics following a structured assessment. Ann Rheum Dis. 2017;76:1263–8.
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Int Med. 2009;150:604–12.
Kannangara DRW, Graham GG, Wright DFB, et al. Individualising the dose of allopurinol in patients with gout. Br J Clin Pharmacol. 2017;83:2015–26.
Weinman EJ, Eknoyan G, Suki WN. The influence of the extracellular fluid volume on the tubular reabsorption of uric acid. J Clin Invest. 1975;55:283.
McAdams-DeMarco MA, Maynard JW, Baer AN, et al. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis. 2013;72:701–6.
Mitnala S, Phipps-Green A, Franklin C, et al. Clinical and genetic features of diuretic-associated gout: a case-control study. Rheumatology (Oxford). 2016;55:1172–6.
Janssens HJEM, van de Lisdonk EH, Janssen M, van den Hoogen HJM, Verbeek ALM. Gout, not induced by diuretics? A case-control study from primary care. Ann Rheum Dis. 2006;65:1080–3.
Stamp LK, Merriman TR, Barclay ML, et al. Impaired response or insufficient dosage? Examining the potential causes of “inadequate response” to allopurinol in the treatment of gout. Semin Arthritis Rheum. 2014;44:170–4.
Knake C, Stamp L, Bahn A. Molecular mechanism of an adverse drug-drug interaction of allopurinol and furosemide in gout treatment. Biochem Biophys Res Commun. 2014;452:157–62.
Stamp LK, Barclay ML, O'Donnell JL, et al. Furosemide increases plasma oxypurinol without lowering serum urate--a complex drug interaction: implications for clinical practice. Rheumatology (Oxford). 2012;51:1670–6.
Hande K, et al. Evaluation of a thiazide-allopurinol drug interaction. Am J Med Sci. 1986;292:213–6.
Loffler W, Landthaler R, de Vries J, et al. Interaction of allopurinol and hydrochlorothiazide during prolonged oral administration of both drugs in normal subjects. Clin Investig. 1994;72:1071–5.
Grabowski B, Khosravan R, Wu JT, et al. Effect of hydrochlorothiazide on the pharmacokinetics and pharmacodynamics of febuxostat, a non-purine selective inhibitor of xanthine oxidase. Br J Clin Pharmacol. 2010;70:57–64.
Perez-Ruiz F, Herrero-Beites AM, Carmona L. A two-stage approach to the treatment of hyperuricemia in gout: the “dirty dish” hypothesis. Arthritis Rheum. 2011;63:4002–6.
Darmawan J, Rasker JJ, Nuralim H. The effect of control and self-medication of chronic gout in a developing country. Outcome after 10 years. J Rheumatol. 2003;30:2437–43.