Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC)

Journal of Separation Science - Tập 31 Số 9 - Trang 1449-1464 - 2008
Zhigang Hao1, Baiming Xiao1, Naidong Weng2
1Research and Development, Bristol-Myers Squibb Company, NJ, USA.
2Global Preclinical Development, Johnson & Johnson Pharmaceutical Research and Development, NJ, USA

Tóm tắt

Abstract

The retention mechanism and chromatographic behavior for different polar analytes under hydrophilic interaction chromatography (HILIC) conditions have been studied by application of different mobile phases and stationary phases to various analytes at different temperatures. In addition to the commonly accepted mechanism of analyte liquid‐liquid partitioning between mobile phase and water‐enriched solvent layer which is partially immobilized onto the surface of the stationary phase, hydrogen‐bonding, hydrophobic interaction, and ion‐exchange interactions may also be involved. The predominant retention mechanism in HILIC separation is not always easily predictable. It can depend not only on the characteristics of the analytes but also on the selection of mobile and stationary phase compositions. The objective of this review is to evaluate the potential application of column temperature and mobile phase composition toward improving HILIC selectivity. The functional groups from analyte structures, stationary phase materials and organic mobile phase solvents will be highlighted.

Từ khóa


Tài liệu tham khảo

10.1016/S0021-9673(00)96972-3

10.1002/jssc.200600199

10.1016/j.chroma.2004.04.033

10.1016/j.jpba.2006.06.038

10.1016/S0021-9673(00)81780-X

10.1007/BF02290440

10.1016/S0021-9673(00)96030-8

10.1016/j.jbbm.2004.01.006

10.1365/s10337-007-0264-0

10.1016/j.jchromb.2003.08.026

10.1365/s10337-007-0200-3

10.1016/S0021-9673(02)00191-7

10.1002/1615-9314(20011101)24:10/11<835::AID-JSSC835>3.0.CO;2-5

10.1002/rcm.1695

10.1016/S0021-9673(97)00479-2

10.1016/S0021-9673(00)01063-3

10.1002/rcm.2171

10.1080/10826070600915114

10.1006/abio.2001.5513

10.1016/j.chroma.2007.01.004

10.1016/j.chroma.2007.02.057

10.1080/15422110500323055

10.1016/j.chroma.2003.11.052

10.1016/j.chroma.2003.11.050

10.1016/j.chroma.2003.10.092

10.1016/j.chroma.2006.11.067

10.1021/ac9705069

10.1093/chromsci/22.4.165

10.1016/S0021-9673(97)00715-2

10.1002/1615-9314(20011201)24:12<930::AID-JSSC930>3.0.CO;2-2

10.1016/S0021-9673(01)01321-8

10.1021/ac960854v

10.1021/ac960849r

10.1021/ac9608681

10.1002/anie.196901571

10.1016/0021-9673(95)00280-4

10.1016/j.chroma.2005.08.025

10.1016/0021-9673(94)00467-6

10.1021/ac048925a

10.1016/j.chroma.2004.04.073

10.1016/S0021-9673(01)83386-0

10.1016/S0021-9673(01)94628-X

10.1016/S0021-9673(03)00512-0

10.1016/j.chroma.2003.11.043

10.1016/j.chroma.2005.03.058

Snyder L. R. Glajch J. L. Kirkland J. J. Practical HPLC method development John Wiley & Sons New York 1997.

10.1021/ac00032a008

10.1016/j.chroma.2005.01.058

10.1002/jssc.200600133

10.1016/j.chroma.2007.04.034

10.1016/S0021-9673(02)01949-0

10.1016/j.chroma.2005.05.056

10.1016/j.chroma.2004.04.019

Nystrom M. K. Herrmann W. G. Larson B. B. B. United States Patent 5256386 1993.

Scott R. P. W., 1982, Adv. Chromatogr., 20, 169

10.1016/S0378-4347(99)00429-6

Hao Z., 2005, J. Am. Soc. Mass Spectrom., 16, 55S

10.1016/j.jchromb.2007.03.024

10.1365/s10337-003-0139-y

Linden H. V. D., 2002, Sens. Mater., 14, 129