Impact of PET data driven respiratory motion correction and BSREM reconstruction of 68Ga-DOTATATE PET/CT for differentiating neuroendocrine tumors (NET) and intrapancreatic accessory spleens (IPAS)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Freeman, J. L., Jafri, S. Z., Roberts, J. L., Mezwa, D. G. & Shirkhoda, A. CT of congenital and acquired abnormalities of the spleen. Radiographics 13, 597–610 (1993).
Varga, I., Babala, J. & Kachlik, D. Anatomic variations of the spleen: Current state of terminology, classification, and embryological background. Surg. Radiol. Anat. 40, 21–29 (2018).
Halpert, B. & Gyorkey, F. Lesions observed in accessory spleens of 311 patients. Am. J. Clin. Pathol. 32, 165–168 (1959).
Eraklis, A. J. & Filler, R. M. Splenectomy in childhood: A review of 1413 cases. J. Pediatr. Surg. 7, 382–388 (1972).
Mortelé, K. J., Mortelé, B. & Silverman, S. G. CT features of the accessory spleen. Am. J. Roentgenol. 183, 1653–1657 (2004).
Yildiz, A. E., Ariyurek, M. O. & Karcaaltincaba, M. Splenic anomalies of shape, size, and location: Pictorial essay. Sci. World J. 2013, 1–9 (2013).
Halpert, B. & Gyorkey, F. Accessory spleen in the tail of the pancreas. A. M. A. Arch. Pathol. 64, 266–269 (1957).
Kim, S. H. et al. MDCT and superparamagnetic iron oxide (SPIO)-enhanced MR findings of intrapancreatic accessory spleen in seven patients. Eur. Radiol. 16, 1887–1897 (2006).
Kawamoto, S. et al. Intrapancreatic accessory spleen: CT appearance and differential diagnosis. Abdom. Imaging 37, 812–827 (2012).
Hamada, T. et al. Laparoscopic spleen-preserving pancreatic tail resection for an intrapancreatic accessory spleen mimicking a nonfunctioning endocrine tumor: Report of a case. Surg. Today 34, 878–881 (2004).
Brasca, L. E. et al. Intrapancreatic accessory spleen mimicking a neuroendocrine tumor: Magnetic resonance findings and possible diagnostic role of different nuclear medicine tests [3]. Eur. Radiol. 14, 1322–1323 (2004).
Ota, T. et al. Intrapancreatic accessory spleen diagnosed by technetium-99m heat-damaged red blood cell SPECT. J. Nucl. Med. 38, 494–495 (1997).
Lancellotti, F. et al. Intrapancreatic accessory spleen false positive to 68Ga-Dotatoc: Case report and literature review. World J. Surg. Oncol. 17, 1–7 (2019).
Prasad, V. & Baum, R. P. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: Characterization of uptake in normal organs and tumor lesions. Q. J. Nucl. Med. Mol. Imaging 54, 61–67 (2010).
Se, H. K. et al. Intrapancreatic accessory spleen: Findings on MR imaging, CT, US and scintigraphy, and the pathologic analysis. Korean J. Radiol. 9, 162–174 (2008).
Rashid, S. A. Accessory spleen: Prevalence and multidetector CT appearance. Malaysian J. Med. Sci. 21, 18–23 (2014).
Takesh, M., Zechmann, C. M., Kratochwil, C., Sahli, H. & Zein, M. Positive somatostatin receptor scintigraphy in accessory spleen mimicking recurrent neuroendocrine tumor. Radiol. Case Rep. 6, 513 (2011).
Bostanci, E. B. et al. Intra-pancreatic accessory spleen mimicking pancreatic neuroendocrine tumor on 68-ga-dotatate PET/CT. Arch. Iran. Med. 19, 816–819 (2016).
Barber, T. W., Dixon, A., Smith, M., Yap, K. S. K. & Kalff, V. Ga-68 octreotate PET/CT and Tc-99m heat-denatured red blood cell SPECT/CT imaging of an intrapancreatic accessory spleen. J. Med. Imaging Radiat. Oncol. 60, 227–229 (2016).
Mansor, S. et al. Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: An experimental evaluation using an oncology and brain phantom: An. Med. Phys. 44, 6413–6424 (2017).
Boellaard, R. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42, 328–354 (2015).
Rubello, D. & Colletti, P. M. SUV harmonization between different hybrid PET/CT systems. Clin. Nucl. Med. 43, 811–814 (2018).
Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J. Nucl. Med. 50, 11S-20S (2009).
Tsoumpas, C., Turkheimer, F. E. & Thielemans, K. Study of direct and indirect parametric estimation methods of linear models in dynamic positron emission tomography. Med. Phys. 35, 1299–1309 (2008).
Adams, M. C., Turkington, T. G., Wilson, J. M. & Wong, T. Z. A systematic review of the factors affecting accuracy of SUV measurements. Am. J. Roentgenol. 195, 310–320 (2010).
Tong, S., Alessio, A. M. & Kinahan, P. E. Image reconstruction for PET/CT scanners: Past achievements and future challenges. Imaging Med. 2, 529–545 (2010).
Ahn, S. & Fessler, J. A. Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans. Med. Imaging 22, 613–626 (2003).
Schwyzer, M. et al. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks – Initial results. Lung Cancer 126, 170–173 (2018).
Aljared, A., Alharbi, A. A. & Huellner, M. W. BSREM reconstruction for improved detection of in-transit metastases with digital FDG-PET/CT in patients with malignant melanoma. Clin. Nucl. Med. 43, 370–371 (2018).
Sah, B. R. et al. Clinical evaluation of a block sequential regularized expectation maximization reconstruction algorithm in 18F-FDG PET/CT studies. Nucl. Med. Commun. 38, 57–66 (2017).
Teoh, E. J. et al. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur. Radiol. 26, 576–584 (2016).
Lindström, E. et al. Evaluation of penalized-likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for 18 F-FDG whole-body examinations. J. Nucl. Med. 59, 1152–1158 (2018).
Lindström, E. et al. Regularized reconstruction of digital time-of-flight 68Ga-PSMA-11 PET/CT for the detection of recurrent disease in prostate cancer patients. Theranostics 9, 3476–3484 (2019).
Thielemans, K., Rathore, S., Engbrant, F. & Razifar, P. Device-less gating for PET/CT using PCA. In IEEE Nuclear Science Symposium Conference Record 3904–3910 (Institute of Electrical and Electronics Engineers Inc., 2011). https://doi.org/10.1109/NSSMIC.2011.6153742.
Thielemans, K. et al. Comparison of different methods for data-driven respiratory gating of PET data. In IEEE Nuclear Science Symposium Conference Record (Institute of Electrical and Electronics Engineers Inc., 2013). https://doi.org/10.1109/NSSMIC.2013.6829055.
Walker, M. D., Bradley, K. M. & McGowan, D. R. Evaluation of principal component analysis-based data-driven respiratory gating for positron emission tomography. Br. J. Radiol. 91, 20170793 (2018).
Walker, M. D., Morgan, A. J., Bradley, K. M. & McGowan, D. R. Evaluation of data-driven respiratory gating waveforms for clinical PET imaging. EJNMMI Res. 9, 1 (2019).
Khamis H, W. S. MotionFree: Device-less digital respiratory gating technique, seamlessly integrated in PET imaging routine. Gen. Electr. Co.
IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
Minitab 19 Statistical Software (2018). [Computer software]. State Collage, PA; Minitab, Inc. (www.minitab.com). https://www.minitab.com/en-us/.
Hanley, J. A. Receiver operating characteristic (ROC) methodology: The state of the art. Crit. Rev. Diagn. Imaging 29, 307–335 (1989).
Hofland, J., Zandee, W. T. & de Herder, W. W. Role of biomarker tests for diagnosis of neuroendocrine tumours. Nat. Rev. Endocrinol. 14, 656–669 (2018).
Chan, D. L. H. et al. Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: Proposal for a novel grading scheme with prognostic significance. Theranostics 7, 1149–1158 (2017).
Lantos, J., Mittra, E. S., Levin, C. S. & Iagaru, A. Standard OSEM vs. regularized PET image reconstruction: Qualitative and quantitative comparison using phantom data and various clinical radiopharmaceuticals. Am. J. Nucl. Med. Mol. Imaging 8, 110–118 (2018).
Messerli, M. et al. Impact of different image reconstructions on PET quantification in non-small cell lung cancer: A comparison of adenocarcinoma and squamous cell carcinoma. Br. J. Radiol. 92, 20180792 (2019).
Messerli, M. et al. Impact of a Bayesian penalized likelihood reconstruction algorithm on image quality in novel digital PET/CT: Clinical implications for the assessment of lung tumors. EJNMMI Phys. 5, 27 (2018).
Brandner, E. D. et al. Abdominal organ motion measured using 4D CT. Int. J. Radiat. Oncol. Biol. Phys. 65, 554–560 (2006).
De Ponti, E. et al. Motion management in PET/CT: Technological solutions. Curr. Radiopharm. 11, 79–85 (2018).
Guerra, L., Ponti, E. De, Morzenti, S., Spadavecchia, C. & Crivellaro, C. Respiratory motion management in PET/CT: Applications and clinical usefulness. Curr. Radiopharm. 10(2), 85–92 (2017).
Kesner, A., Schmidtlein, C. R. & Kuntner, C. Real-time data-driven motion correction in PET. EJNMMI Phys. 6, 3 (2019).
Catalano, O. A. et al. Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). Eur. J. Nucl. Med. Mol. Imaging 45, 2147–2154 (2018).
Coquia, S. F. et al. Intrapancreatic accessory spleen: Possibilities of computed tomography in differentiation from nonfunctioning pancreatic neuroendocrine tumor. J. Comput. Assist. Tomogr. 38, 874–878 (2014).