Impact of Heat and Laccase on the pH and Freeze-Thaw Stability of Oil-in-Water Emulsions Stabilized by Adsorbed Biopolymer Nanoparticles

Food Biophysics - Tập 9 - Trang 125-137 - 2013
Benjamin Zeeb1, Hanna Salminen1, Lutz Fischer2, Jochen Weiss1
1Department of Food Physics and Meat Science, University of Hohenheim, Stuttgart, Germany
2Department of Food Biotechnology, University of Hohenheim, Stuttgart, Germany

Tóm tắt

The enzymatic cross-linking of adsorbed biopolymer nanoparticles formed between whey protein isolate (WPI) and sugar beet pectin using the complex coacervation method was investigated. A sequential electrostatic depositioning process was used to prepare emulsions containing oil droplets stabilized by WPI – nanoparticle – membranes. Firstly, a finely dispersed primary emulsion (10 % w/w miglyol oil, 1 % w/w WPI, 10 mM acetate buffer at pH 4) was produced using a high-pressure homogenizer. Secondly, a series of biopolymer particles were formed by mixing WPI (0.5 % w/w) and pectin (0.25 % w/w) solutions with subsequent heating above the thermal denaturation temperature (85 °C, 20 min) to prepare dispersions containing particles in the submicron range. Thirdly, nanoparticle-covered emulsions were formed by diluting the primary emulsion into coacervate solutions (0–0.675 % w/w) to coat the droplets. Oil droplets of stable emulsions with different interfacial membrane compositions were subjected to enzymatic cross-linking. We used cross-linked multilayered emulsions as a comparison. The pH stability of primary emulsions, biopolymer complexes and nanoparticle-coated base emulsions, as well as multilayered emulsions, was determined before and after enzyme addition. Freeze-thaw stability (−9 °C for 22 h, 25 °C for 2 h) of nanoparticle-coated emulsions was not affected by laccase. Results indicated that cross-linking occurred exclusively in the multilamellar layers and not between adsorbed biopolymer nanoparticles. Results suggest that the accessibility of distinct structures may play a key role for biopolymer-cross-linking enzymes.

Tài liệu tham khảo

D.J. McClements, Food emulsions: Principles, practice, and techniques (CRC Press, Boca Raton, 2004) D. Iwanaga, D. Gray, E.A. Decker, J. Weiss, D.J. McClements, J. Agric. Food Chem. 56(6), 2240–2245 (2008) J. Leroux, V. Langendorff, G. Schick, V. Vaishnav, J. Mazoyer, Food Hydrocolloids 17(4), 455–462 (2003) K.S. Chee, P.A. Williams, J. Agric. Food Chem. 56(11), 4164–4171 (2008) E. Dickinson, Colloids. Surf. B. 81(1), 130–140 (2010) E. Dickinson, J. Chem. Soc. Faraday. Trans. 88(20), 2973–2983 (1992) R. Chanamai, D.J. McClements, J. Food Sci. 67(1), 120–125 (2002) K. Demetriades, J.N. Coupland, D.J. McClements, J. Food Sci. 62(2), 342–347 (1997) D. Guzey, D.J. McClements, Adv. Colloid Interface Sci. 128–130, 227–248 (2006) Y.S. Gu, E.A. Decker, D.J. McClements, J. Agric. Food Chem. 52(11), 3626–3632 (2004) T. Aoki, E.A. Decker, D.J. McClements, Food Hydrocolloids 19(2), 209–220 (2005) D. Guzey, D.J. McClements, Food Biophys 1(1), 30–40 (2006) Y.S. Gu, E.A. Decker, D.J. McClements, Food Hydrocolloids 21(4), 516–526 (2007) S.L. Turgeon, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 12(4–5), 166–178 (2007) O.G. Jones, D.J. McClements, Food Biophys. 3(2), 191–197 (2008) W. Chanasattru, O.G. Jones, E.A. Decker, D.J. McClements, Food Hydrocolloids 23(8), 2450–2457 (2009) O.G. Jones, E.A. Decker, D.J. McClements, Food Hydrocolloids 23(5), 1312–1321 (2009) O.G. Jones, U. Lesmes, P. Dubin, D.J. McClements, Food Hydrocolloids 24(4), 374–383 (2010) M.-C. Gentes, D. St-Gelais, S.L. Turgeon, J. Agric. Food Chem. 58(11), 7051–7058 (2010) O.G. Jones, D.J. McClements, J. Food Sci. 75(2), N36–N43 (2010) H. Salminen, J. Weiss, Electrostatic adsorption and stability of whey protein–pectin complexes on emulsion interfaces. Food Hydrocolloids 35, 410–419 (2014) B. Zeeb, M. Gibis, L. Fischer, J. Weiss, Food Hydrocolloids 27(1), 126–136 (2012) B. Zeeb, J. Beicht, T. Eisele, M. Gibis, L. Fischer, J. Weiss, Food Res. Int. 54(2), 1712–1721 (2013) B. Zeeb, L. Fischer, J. Weiss, J. Agric. Food Chem. 59(19), 10546–10555 (2011) F. Littoz, D.J. McClements, Food Hydrocolloids 22(7), 1203–1211 (2008) B. Chen, H. Li, Y. Ding, H. Suo, LWT – Food Sci Technol. 47(1), 31–38 (2012) S. Rauf, D. Zhou, C. Abell, D. Klenerman, D.J. Kang, Chem. Commun. 16, 1721–1723 (2006) D.C. Kim, J.I. Sohn, D. Zhou, T.A.J. Duke, D.J. Kang, ACS Nano 4(3), 1580–1586 (2010) D.G. Dalgleish, F.R. Hallett, Food Res. Int. 28(3), 181–193 (1995) M.A.M. Hoffmann, S.P.F.M. Roefs, M. Verheul, P.J.J.M. Van Mil, K.G. De Kruif, J. Dairy Res. 63(3), 423–440 (1996) M.A.M. Hoffmann, P.J.J.M. van Mil, J. Agric. Food Chem. 45(8), 2942–2948 (1997) J.F. Thibault, Carbohydr. Polym. 8(3), 209–223 (1988) P.A. Williams, C. Sayers, C. Viebke, C. Senan, J. Mazoyer, P. Boulenguer, J. Agric. Food Chem. 53(9), 3592–3597 (2005) M.J. Blandamer, P.M. Cullis, J.B.F.N. Engberts, J. Chem. Soc. Faraday Trans. 94(16), 2261–2267 (1998) J.E. Ladbury, B.Z. Chowdhry, Chem. Biol. 3(10), 791–801 (1996) A. Synytsya, J. Copiková, P. Jankovskà, P. Matejka, V. Machovic, Int. Sugar J. 105(1258), 481–488 (2003) A. Oosterveld, J.H. Grabber, G. Beldman, J. Ralph, A.G.J. Voragen, Carbohydr. Res. 300(2), 179–181 (1997) H. Ma, P. Forssell, R. Partanen, J. Buchert, H. Boer, J. Agric. Food Chem. 59(4), 1406–1414 (2011) D.N.A. Zaidel, I.S. Chronakis, A.S. Meyer, Food Hydrocolloids 30(1), 19–25 (2013)