Immunobiology of Dendritic Cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fearon, D.T., R.M. Locksley. 1996. The instructive role of innate immunity in the acquired immune response.Science272:50–53
Hoffmann, J.A., F.C. Kafatos, C.A. Janeway, R.A. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity.Science284:1313–18
Medzhitov, R., C.A. Janeway, Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition.Cell91: 295–98
Muzio, M., G. Natoli, S. Saccani, M. Levrero, A. Mantovani. 1998. The human toll signaling pathway: divergence of nuclear factor κB and JNK/ SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6).J. Exp. Med.187:2097–101
Brightbill, H.D., D.H. Libraty, S.R. Krutzik, R.B. Yang, J.T. Belisle, J.R. Bleharski, M. Maitland, M.V. Norgard, S.E. Plevy, S.T. Smale, P.J. Brennan, B.R. Bloom, P.J. Godowski, R.L. Modlin. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors.Science285:732–36
Aliprantis, A.O., R.B. Yang, M.R. Mark, S. Suggett, B. Devaux, J.D. Radolf, G.R. Klimpel, P. Godowski, A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2.Science285:736–39
Hart DN. 1997. Dendritic cells: unique leukocyte populations which control the primary immune response.Blood90:3245–87
Lambrecht, B.N., B. Salomon, D. Klatzmann, R.A. Pauwels. 1998. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice.J. Immunol.160:4090–97
Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, R.M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.J. Exp. Med.176:1693–702
Scheicher, C., M. Mehlig, R. Zecher, K. Reske. 1992. Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor.J. Immunol. Methods154:253–64
Ardavin, C., L. Wu, C.L. Li, K. Shortman. 1993. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population.Nature362:761–63
Saunders, D., K. Lucas, J. Ismaili, L. Wu, E. Maraskovsky, A. Dunn, K. Shortman. 1996. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor.J. Exp. Med.184:2185–96
Steinman, R.M., M. Pack, K. Inaba. 1997. Dendritic cells in the T-cell areas of lymphoid organs.Immunol. Rev.156:25–37
Vremec, D., M. Zorbas, R. Scollay, D.J. Saunders, C.F. Ardavin, L. Wu, K. Shortman. 1992. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells.J. Exp. Med.176:47–58
Wu, L., C.L. Li, K. Shortman. 1996. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny.J. Exp. Med.184:903–11
Shortman, K., D. Vremec, L.M. Corcoran, K. Georgopoulos, K. Lucas, L. Wu. 1998. The linkage between T-cell and dendritic cell development in the mouse thymus.Immunol. Rev.165:39–46
Vremec D, K. Shortman. 1997. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes.J. Immunol.159:565–73
Maraskovsky E., K. Brasel, M. Teepe, E.R. Roux, S.D. Lyman, K. Shortman, H.J. McKenna. 1996. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified.J. Exp. Med.184:1953– 62
Pulendran B., J. Lingappa, M.K. Kennedy, J. Smith, M. Teepe, A. Rudensky, C.R. Maliszewski, E. Maraskovsky. 1997. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice.J. Immunol.159:2222–31
De Smedt T., B. Pajak, E. Muraille, L. Lespagnard, E. Heinen, P. De Baetselier, J. Urbain, O. Leo, M. Moser. 1996. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo.J. Exp. Med.184:1413–24
Leenen P.J., K. Radosevic, J.S. Voerman, B. Salomon, N. van Rooijen, D. Klatzmann, W. van Ewijk. 1998. Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover.J. Immunol.160:2166–73
Reis e Sousa C.R., S. Hieny, T. SchartonKersten, D. Jankovic, H. Charest, R.N. Germain, A. Sher. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas.J. Exp. Med.186:1819–29
Maldonado-Lopez R, T. De Smedt, P. Michel, J. Godfroid, B. Pajak, C. Heirman, K. Thielemans, O. Leo, J. Urbain, M. Moser. 1999. CD8α+ and CD8α— subclasses of dendritic cells direct the development of distinct T helper cells in vivo.J. Exp. Med.189:587–92
Ohteki, T., T. Fukao, K. Suzue, C. Maki, M. Ito, M. Nakamura, S. Koyasu. 1999. Interleukin 12-dependent interferon γ production by CD8α+ lymphoid dendritic cells.J. Exp. Med.189:1981–86
Kronin, V., K. Winkel, G. Suss, A. Kelso, W. Heath, J. Kirberg, H. von Boehmer, K. Shortman. 1996. A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production.J. Immunol.157:3819–27
Suss G., K. Shortman. 1996. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis.J. Exp. Med.183:1789–96
Pulendran B., J.L. Smith, G. Caspary, K. Brasel, D. Pettit, E. Maraskovsky, C.R. Maliszewski. 1999. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo.Proc. Natl. Acad. Sci. USA96:1036–41
Lyman S.D., S.E. Jacobsen. 1998. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities.Blood91:1101–34
Shurin M.R., P.P. Pandharipande, T.D. Zorina, C. Haluszczak, V.M. Subbotin, O. Hunter, A. Brumfield, W.J. Storkus, E. Maraskovsky, M.T. Lotze. 1997. FLT3 ligand induces the generation of functionally active dendritic cells in mice.Cell Immunol.179:174–84
Mohamadzadeh M., H. Jonuleit, G. Kolde, A. Pavlidou, E. Schmitt, J. Knop. 1993. Functional and morphological characterization of 4F7+ spleen accessory dendritic cells.Int. Immunol.5:615– 24
Salomon B., J.L. Cohen, C. Masurier, D. Klatzmann. 1998. Three populations of mouse lymph node dendritic cells with different origins and dynamics.J. Immunol.160:708–17
Borkowski T.A., J.J. Letterio, A.G. Farr, M.C. Udey. 1996. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells.J. Exp. Med.184:2417–22
Burkly L., C. Hession, L. Ogata, C. Reilly, L.A. Marconi, D. Olson, R. Tizard, R. Cate, D. Lo. 1995. Expression of relB is required for the development of thymic medulla and dendritic cells.Nature373:531–36
Wu L., A. Nichogiannopoulou, K. Shortman, K. Georgopoulos. 1997. Cellautonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage.Immunity7:483–92
Weih, F., D. Carrasco, S.K. Durham, D.S. Barton, C.A. Rizzo, R.P. Ryseck, S.A. Lira, R. Bravo. 1995. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-γ B/Rel family.Cell80:331–40
Boehmelt, G., J. Madruga, P. Dorfler, K. Briegel, H. Schwarz, P.J. Enrietto, M. Zenke. 1995. Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-RelER.Cell80:341–52
Grouard, G., M.C. Rissoan, L. Filgueira, I. Durand, J. Banchereau, Y.J. Liu. 1997. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand.J. Exp. Med.185:1101–11
Olweus, J., A. BitMansour, R. Warnke, P.A. Thompson, J. Carballido, L.J. Picker, F. Lund-Johansen. 1997. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin.Proc. Natl. Acad. Sci. USA94:12551–56
O’Doherty, U., R.M. Steinman, M. Peng, P.U. Cameron, S. Gezelter, I. Kopeloff, W.J. Swiggard, M. Pope, N. Bhardwaj. 1993. Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyteconditioned medium.J. Exp. Med.178:1067–76
Strobl, H., C. Scheinecker, E. Riedl, B. Csmarits, C. Bello-Fernandez, W.F. Pickl, O. Majdic, W. Knapp. 1998. Identification of CD68+lin-peripheral blood cells with dendritic precursor characteristics.J. Immunol.161:740–48
Strunk, D., C. Egger, G. Leitner, D. Hanau, G. Stingl. 1997. A skin homing molecule defines the langerhans cell progenitor in human peripheral blood.J. Exp. Med.185:1131–36
Galy, A., M. Travis, D. Cen, B. Chen. 1995. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset.Immunity3:459–73
Res, P., E. Martinez-Caceres, A. Cristina Jaleco, F. Staal, E. Noteboom, K. Weijer, H. Spits. 1996. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells.Blood87:5196–206
Romani, N., S. Gruner, D. Brang, E. Kampgen, A. Lenz, B. Trockenbacher, G. Konwalinka, P.O. Fritsch, R.M. Steinman, G. Schuler. 1994. Proliferating dendritic cell progenitors in human blood.J. Exp. Med.180:83–93
Sallusto, F., A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α.J. Exp. Med.179:1109–18
Zhou, L.J., T.F. Tedder. 1996. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells.Proc. Natl. Acad. Sci. USA93:2588–92
Ito, T., M. Inaba, K. Inaba, J. Toki, S. Sogo, T. Iguchi, Y. Adachi, K. Yamaguchi, R. Amakawa, J. Valladeau, S. Saeland, S. Fukuhara, S. Ikehara. 1999. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of langerhans cells.J. Immunol.163:1409–19
Strobl, H., C. Bello-Fernandez, E. Riedl, W.F. Pickl, O. Majdic, S.D. Lyman, W. Knapp. 1997. flt3 ligand in cooperation with transforming growth factor-β1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions.Blood90:1425–34
Caux, C., B. Vanbervliet, C. Massacrier, C. Dezutter-Dambuyant, B. de Saint-Vis, C. Jacquet, K. Yoneda, S. Imamura, D. Schmitt, J. Banchereau. 1996. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFα.J. Exp. Med.184:695–706
Palucka, K.A., N. Taquet, F. SanchezChapuis, J.C. Gluckman. 1998. Dendritic cells as the terminal stage of monocyte differentiation.J. Immunol.160:4587–95
Cella, M., D. Jarrossay, F. Facchetti, O. Alebardi, H. Nakajima, A. Lanzavecchia, M. Colonna. 1999. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon.Nat. Med.5:919–23
Rissoan, M.C., V. Soumelis, N. Kadowaki, G. Grouard, F. Briere, R. de Waal Malefyt, Y.J. Liu. 1999. Reciprocal control of T helper cell and dendritic cell differentiation.Science283:1183–86
Siegal, F.P., N. Kadowaki, M. Shodell, P.A. Fitzgerald-Bocarsly, K. Shah, S. Ho, S. Antonenko, Y.J. Liu. 1999. The nature of the principal type 1 interferon-producing cells in human blood.Science284:1835–37
Bruno, L., P. Res, M. Dessing, M. Cella, H. Spits. 1997. Identification of a committed T cell precursor population in adult human peripheral blood.J. Exp. Med.185:875–84
Nestle, F.O., X.G. Zheng, C.B. Thompson, L.A. Turka, B.J. Nickoloff. 1993. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets.J. Immunol.151:6535– 45. Erratum. 1994.J. Immunol.152(1):376
Caux, C., C. Dezutter-Dambuyant, D. Schmitt, J. Banchereau. 1992. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells.Nature360:258–61
Caux, C., C. Massacrier, B. Vanbervliet, B. Dubois, I. Durand, M. Cella, A. Lanzavecchia, J. Banchereau. 1997. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor α: II. Functional analysis.Blood90:1458–70
de Saint-Vis, B., I. Fugier-Vivier, C. Massacrier, C. Gaillard, B. Vanbervliet, S. Ait-Yahia, J. Banchereau, Y.J. Liu, S. Lebecque, C. Caux. 1998. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation.J. Immunol.160:1666–76
Mommaas, A.M., A.A. Mulder, R. Jordens, C. Out, M.C. Tan, P. Cresswell, P.M. Kluin, F. Koning. 1999. Human epidermal Langerhans cells lack functional mannose receptors and a fully developed endosomal/lysosomal compartment for loading of HLA class II molecules.Eur. J. Immunol.29:571–80
Mortarini, R., A. Anichini, M. Di Nicola, S. Siena, M. Bregni, F. Belli, A. Molla, A.M. Gianni, G. Parmiani. 1997. Autologous dendritic cells derived from CD34+ progenitors and from monocytes are not functionally equivalent antigen-presenting cells in the induction of melan-A/Mart-1(27–35)-specific CTLs from peripheral blood lymphocytes of melanoma patients with low frequency of CTL precursors.Cancer Res.57:5534– 41
Ferbas, J.J., J.F. Toso, A.J. Logar, J.S. Navratil, C.R. Rinaldo, Jr. 1994. CD4+ blood dendritic cells are potent producers of IFN-α in response to in vitro HIV-1 infection.J. Immunol.152:649–62. Erratum. 1994.J. Immunol.153(2):910
Austyn, J.M., J.W. Kupiec-Weglinski, D.F. Hankins, P.J. Morris. 1988. Migration patterns of dendritic cells in the mouse: homing to T cell-dependent areas of spleen, and binding within marginal zone.J. Exp. Med.167:646–51
McWilliam, A.S., S. Napoli, A.M. Marsh, F.L. Pemper, D.J. Nelson, C.L. Pimm, P.A. Stumbles, T.N. Wells, P.G. Holt. 1996. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli.J. Exp. Med.184:2429– 32
McWilliam, A.S., D. Nelson, J.A. Thomas, P.G. Holt. 1994. Rapid dendritic cell recruitment is a hallmark of the acute inflammatory response at mucosal surfaces.J. Exp. Med.179:1331–36
Dieu, M.C., B. Vanbervliet, A. Vicari, J.M. Bridon, E. Oldham, S. Ait-Yahia, F. Briere, A. Zlotnik, S. Lebecque, C. Caux. 1998. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites.J. Exp. Med.188:373–86
Power, C.A., D.J. Church, A. Meyer, S. Alouani, A.E. Proudfoot, I. Clark-Lewis, S. Sozzani, A. Mantovani, T.N. Wells. 1997. Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3α from lung dendritic cells.J. Exp. Med.186:825–35
Greaves, D.R., W. Wang, D.J. Dairaghi, M.C. Dieu, B. Saint-Vis, K. FranzBacon, D. Rossi, C. Caux, T. McClanahan, S. Gordon, A. Zlotnik, T.J. Schall. 1997. CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells.J. Exp. Med.186:837–44
Tanaka, Y., T. Imai, M. Baba, I. Ishikawa, M. Uehira, H. Nomiyama, O. Yoshie. 1999. Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans.Eur.J. Immunol.29:633–42
Liao, F., R.L. Rabin, C.S. Smith, G. Sharma, T.B. Nutman, J.M. Farber. 1999. CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3α.J. Immunol.162:186–94
Bell, D., D. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, A. Palucka, J. Banchereau. 1999. In breast carcinoma tissue, immature DC reside within the tumor while mature DC are located in peritumoral area.J. Exp. Med.190:1417–26
Jakob, T., M.C. Udey. 1998. Regulation of E-cadherin-mediated adhesion in Langerhans cell-like dendritic cells by inflammatory mediators that mobilize Langerhans cells in vivo.J. Immunol.160:4067–73
Tang, A., M. Amagai, L.G. Granger, J.R. Stanley, M.C. Udey. 1993. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin.Nature361:82–85
Hashimoto, S., T. Suzuki, H.Y. Dong, S. Nagai, N. Yamazaki, K. Matsushima. 1999. Serial analysis of gene expression in human monocyte-derived dendritic cells.Blood94:845–52
Engering, A.J., M. Cella, D. Fluitsma, M. Brockhaus, E.C. Hoefsmit, A. Lanzavecchia, J. Pieters. 1997. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells.Eur. J. Immunol.27:2417–25
Jiang, W., W.J. Swiggard, C. Heufler, M. Peng, A. Mirza, R.M. Steinman, M.C. Nussenzweig. 1995. The receptor DEC205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing.Nature375:151–55
Sallusto, F., M. Cella, C. Danieli, A. Lanzavecchia. 1995. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.J. Exp. Med.182:389–400
Tan, M.C., A.M. Mommaas, J.W. Drijfhout, R. Jordens, J.J. Onderwater, D. Verwoerd, A.A. Mulder, A.N. van der Heiden, D. Scheidegger, L.C. Oomen, T.H. Ottenhoff, A. Tulp, J.J. Neefjes, F. Koning. 1997. Mannose receptormediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells.Eur. J. Immunol.27:2426–35
Reis e Sousa, C., P.D. Stahl, J.M. Austyn. 1993. Phagocytosis of antigens by Langerhans cells in vitro.J. Exp. Med.178:509–19
Fanger, N.A., K. Wardwell, L. Shen, T.F. Tedder, P.M. Guyre. 1996. Type I (CD64) and type II (CD32) Fc γ receptormediated phagocytosis by human blood dendritic cells.J. Immunol.157:541–48
Matsuno, K., T. Ezaki, S. Kudo, Y. Uehara. 1996. A life stage of particleladen rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph.J. Exp. Med.183:1865–78
Albert, M.L., S.F. Pearce, L.M. Francisco, B. Sauter, P. Roy, R.L. Silverstein, N. Bhardwaj. 1998. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes.J. Exp. Med.188:1359–68
Albert, M.L., B. Sauter, N. Bhardwaj. 1998. Dendritic cells acquire antigen from apoptotic cells and induce class Irestricted CTLs.Nature392:86–89
Rubartelli, A., A. Poggi, M.R. Zocchi. 1997. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the α(v)β3 integrin and requires intracellular and extracellular calcium.Eur.J. Immunol.27:1893–900
Inaba, K., M. Inaba, M. Naito, R.M. Steinman. 1993. Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo.J. Exp. Med.178:479–88
Rescigno, M., F. Granucci, S. Citterio, M. Foti, P. Ricciardi-Castagnoli. 1999. Coordinated events during bacteriainduced DC maturation.Immunol. Today20:200–3
Arnold-Schild, D., D. Hanau, D. Spehner, C. Schmid, H.G. Rammensee, H. de la Salle, H. Schild. 1999. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigenpresenting cells.J. Immunol.162:3757– 60
Todryk, S., A.A. Melcher, N. Hardwick, E. Linardakis, A. Bateman, M.P. Colombo, A. Stoppacciaro, R.G. Vile. 1999. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake.J. Immunol.163:1398–408
Valladeau, J., V. Duvert-Frances, J.J. Pin, C. Massacrier, J. Vincent, K. Yoneda, C. Dezutter-Dambuyant, C. Vincent, J. Banchereau, C. Caux, J. Davoust, S. Saeland. 1999. The monoclonal antibody DCGM4 recognizes langerin, a protein specific of Langherans cells, and is rapidly internalized from the cell-surface.Eur.J. Immunol.29:2695–2704
Valladeau, J., O. Ravel, C. DezutterDambuyant, K. Moore, M. Kleijmeer, V. Duvert-Frances, C. Vincent, D. Schmitt, J. Davoust, C. Caux, S. Lebecque, S. Saeland. 1999. Langerin, a novel transmembrane C-type lectin specific of Langherans cells, induces the formation of Birbeck granules.Immunity.In press
Maurer, D., E. Fiebiger, B. Reininger, C. Ebner, P. Petzelbauer, G.P. Shi, H.A. Chapman, G. Stingl. 1998. Fc epsilon receptor I on dendritic cells delivers IgEbound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation.J. Immunol.161:2731–39
Akbari, O., N. Panjwani, S. Garcia, R. Tascon, D. Lowrie, B. Stockinger. 1999. DNA vaccination: transfection and activation of dendritic cells as key events for immunity.J. Exp. Med.189:169–78
Hacker, H., H. Mischak, T. Miethke, S. Liptay, R. Schmid, T. Sparwasser, K. Heeg, G.B. Lipford, H. Wagner. 1998. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by nonspecific endocytosis and endosomal maturation.EMBO J.17:6230–40
Hartmann, G., G.J. Weiner, A.M. Krieg. 1999. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells.Proc. Natl. Acad. Sci. USA96:9305–10
Cella, M., M. Salio, Y. Sakakibara, H. Langen, I. Julkunen, A. Lanzavecchia. 1999. Maturation, activation, and protection of dendritic cells induced by doublestranded RNA.J. Exp. Med.189:821–29
Winzler, C., P. Rovere, M. Rescigno, F. Granucci, G. Penna, L. Adorini, V.S. Zimmermann, J. Davoust, P. RicciardiCastagnoli. 1997. Maturation stages of mouse dendritic cells in growth factordependent long-term cultures.J.Exp.Med.185:317–28
Mosialos, G., M. Birkenbach, S. Ayehunie, F. Matsumura, G.S. Pinkus, E. Kieff, E. Langhoff. 1996. Circulating human dendritic cells differentially express high levels of a 55-kd actin-bundling protein.Am. J. Pathol.148:593–600
Ross, R., X.L. Ross, J. Schwing, T. Langin, A.B. Reske-Kunz. 1998. The actinbundling protein fascin is involved in the formation of dendritic processes in maturing epidermal Langerhans cells.J. Immunol.160:3776–82
Binks, M., G.E. Jones, P.M. Brickell, C. Kinnon, D.R. Katz, A.J. Thrasher. 1998. Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome.Eur.J. Immunol.28:3259–67
Parolini, O., S. Berardelli, E. Riedl, C. Bello-Fernandez, H. Strobl, O. Majdic, W. Knapp. 1997. Expression of WiskottAldrich syndrome protein (WASP) gene during hematopoietic differentiation. Blood 90:70–75
Cella, M., C. Dohring, J. Samaridis, M. Dessing, M. Brockhaus, A. Lanzavecchia, M. Colonna. 1997. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing.J. Exp. Med.185:1743–51
Long, E.O. 1999. Regulation of immune responses through inhibitory receptors.Annu. Rev. Immunol.17:875–904
Kripke, M.L., C.G. Munn, A. Jeevan, J.M. Tang, C. Bucana. 1990. Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization.J. Immunol.145:2833–38
Larsen, C.P., R.M. Steinman, M. WitmerPack, D.F. Hankins, P.J. Morris, J.M. Austyn. 1990. Migration and maturation of Langerhans cells in skin transplants and explants.J. Exp. Med.172:1483–93
Macatonia, S.E., S.C. Knight, A.J. Edwards, S. Griffiths, P. Fryer. 1987. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate: functional and morphological studies.J. Exp. Med.166:1654–67
Cumberbatch, M., I. Kimber. 1995. Tumour necrosis factor-α is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization.Immunology84:31–35
Sallusto, F., P. Schaerli, P. Loetscher, C. Schaniel, D. Lenig, C.R. Mackay, S. Qin, A. Lanzavecchia. 1998. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation.Eur.J. Immunol.28:2760–69
Sozzani, S., P. Allavena, A. Vecchi, A. Mantovani. 1999. The role of chemokines in the regulation of dendritic cell trafficking.J. Leukocyte Biol.66:1–9
Yoshida, R., T. Imai, K. Hieshima, J. Kusuda, M. Baba, M. Kitaura, M. Nishimura, M. Kakizaki, H. Nomiyama, O. Yoshie. 1997. Molecular cloning of a novel human CC chemokine EBI1ligand chemokine that is a specific functional ligand for EBI1, CCR7.J. Biol. Chem.272:13803–9
Chan, V.W., S. Kothakota, M.C. Rohan, L. Panganiban-Lustan, J.P. Gardner, M.S. Wachowicz, J.A. Winter, L.T. Williams. 1999. Secondary lymphoid-tissue chemokine (SLC) is chemotactic for mature dendritic cells.Blood93:3610–16
Gunn, M.D., K. Tangemann, C. Tam, J.G. Cyster, S.D. Rosen, L.T. Williams. 1998. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes.Proc. Natl. Acad. Sci. USA95:258–63
Saeki, H., A.M. Moore, M.J. Brown, S.T. Hwang. 1999. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes.J. Immunol.162:2472–75
Ngo, V.N., H.L. Tang, J.G. Cyster. 1998. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells.J. Exp. Med.188:181–91
Campbell, J.J., J. Hedrick, A. Zlotnik, M.A. Siani, D.A. Thompson, E.C. Butcher. 1998. Chemokines and the arrest of lymphocytes rolling under flow conditions.Science279:381–84
Gunn, M.D., S. Kyuwa, C. Tam, T. Kakiuchi, A. Matsuzawa, L.T. Williams, H. Nakano. 1999. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization.J. Exp. Med.189:451–60
Nakano, H., T. Tamura, T. Yoshimoto, H. Yagita, M. Miyasaka, E.C. Butcher, H. Nariuchi, T. Kakiuchi, A. Matsuzawa. 1997. Genetic defect in T lymphocytespecific homing into peripheral lymph nodes.Eur.J. Immunol.27:215–21
Nakano, H., S. Mori, H. Yonekawa, H. Nariuchi, A. Matsuzawa, T. Kakiuchi. 1998. A novel mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid organs on mouse chromosome 4.Blood91:2886–95
Forster, R., A.E. Mattis, E. Kremmer, E. Wolf, G. Brem, M. Lipp. 1996. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen.Cell87:1037–47
Kanazawa, N., T. Nakamura, K. Tashiro, M. Muramatsu, K. Morita, K. Yoneda, K. Inaba, S. Imamura, T. Honjo. 1999. Fractalkine and macrophage-derived chemokine: T cell-attracting chemokines expressed in T cell area dendritic cells.Eur.J. Immunol.29:1925–32
Adema, G. J, F. Hartgers, R. Verstraten, E. de Vries, G. Marland, S. Menon, J. Foster, Y. Xu, P. Nooyen, T. McClanahan, K.B. Bacon, C.G. Figdor. 1997. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells.Nature387:713–17
Tang, H.L., J.G. Cyster. 1999. Chemokine up-regulation and activated T cell attraction by maturing dendritic cells.Science284:819–22
Inaba, K., S. Turley, F. Yamaide, T. Iyoda, K. Mahnke, M. Inaba, M. Pack, M. Subklewe, B. Sauter, D. Sheff, M. Albert, N. Bhardwaj, I. Mellman, R.M. Steinman. 1998. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells.J. Exp. Med.188:2163–73
Inaba, K., M. Pack, M. Inaba, H. Sakuta, F. Isdell, R.M. Steinman. 1997. High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes.J. Exp. Med.186:665–72
Kleijmeer, M.J., M.A. Ossevoort, C.J. van Veen, J.J. van Hellemond, J.J. Neefjes, W.M. Kast, C.J. Melief, H.J. Geuze. 1995. MHC class II compartments and the kinetics of antigen presentation in activated mouse spleen dendritic cells.J. Immunol.154:5715–24
Nijman, H.W., M.J. Kleijmeer, M.A. Ossevoort, V.M. Oorschot, M.P. Vierboom, M. van de Keur, P. Kenemans, W.M. Kast, H.J. Geuze, C.J. Melief. 1995. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells.J. Exp. Med.182:163–74
Castellino, F., G. Zhong, R.N. Germain. 1997. Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture.Hum. Immunol.54:159–69
Rovere, P., V.S. Zimmermann, F. Forquet, D. Demandolx, J. Trucy, P. Ricciardi-Castagnoli, J. Davoust. 1998. Dendritic cell maturation and antigen presentation in the absence of invariant chain.Proc. Natl. Acad. Sci. USA95:1067–72
Lutz, M.B., P. Rovere, M.J. Kleijmeer, M. Rescigno, C.U. Assmann, V.M. Oorschot, H.J. Geuze, J. Trucy, D. Demandolx, J. Davoust, P. Ricciardi-Castagnoli. 1997. Intracellular routes and selective retention of antigens in mildly acidic cathepsin D/lysosome-associated membrane protein-1/MHC class II-positive vesicles in immature dendritic cells.J. Immunol.159:3707–16
Pierre, P., I. Mellman. 1998. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells.Cell93:1135– 45
Cella, M., A. Engering, V. Pinet, J. Pieters, A. Lanzavecchia. 1997. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells.Nature388:782–87
Pierre, P., S.J. Turley, E. Gatti, M. Hull, J. Meltzer, A. Mirza, K. Inaba, R.M. Steinman, I. Mellman. 1997. Developmental regulation of MHC class II transport in mouse dendritic cells.Nature388:787–92
de Saint-Vis, B., J. Vincent, S. Vandenabeele, B. Vanbervliet, J.J. Pin, S. AitYahia, S. Patel, M.G. Mattei, J. Banchereau, S. Zurawski, J. Davoust, C. Caux, S. Lebecque. 1998. A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment.Immunity9:325–36
Koppelman, B., J.J. Neefjes, J.E. de Vries, R. de Waal Malefyt. 1997. Interleukin-10 down-regulates MHC class II αβ peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling.Immunity7:861–71
Butz, E. A, M.J. Bevan. 1998. Differential presentation of the same MHC class I epitopes by fibroblasts and dendritic cells.J. Immunol.160:2139–44
Pamer, E., P. Cresswell. 1998. Mechanisms of MHC class I–restricted antigen processing.Annu. Re.v Immunol.16:323–58
Rock, K.L., A.L. Goldberg. 1999. Degradation of cell proteins and the generation of MHC class I-presented peptides.Annu. Rev. Immunol.17:739–79
Bates, E.E., O. Ravel, M.C. Dieu, S. Ho, C. Guret, J.M. Bridon, S. Ait-Yahia, F. Briere, C. Caux, J. Banchereau, S. Lebecque. 1997. Identification and analysis of a novel member of the ubiquitin family expressed in dendritic cells and mature B cells.Eur. J. Immunol.27:2471–77
Liu, Y.C., J. Pan, C. Zhang, W. Fan, M. Collinge, J.R. Bender, S.M. Weissman. 1999. A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2.Proc. Natl. Acad. Sci. USA96:4313–18
Bevan, M.J. 1976. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay.J. Exp. Med.143:1283–88
Bevan, M.J. 1977. Priming for a cytotoxic response to minor histocompatibility antigens: antigen specificity and failure to demonstrate a carrier effect.J. Immunol.118:1370–74
Norbury, C.C., B.J. Chambers, A.R. Prescott, H.G. Ljunggren, C. Watts. 1997. Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells.Eur.J. Immunol.27:280–88
Pfeifer, J.D., M.J. Wick, R.L. Roberts, K. Findlay, S.J. Normark, C.V. Harding. 1993. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells.Nature361:359–62
Kovacsovics-Bankowski, M., K. Clark, B. Benacerraf, K.L. Rock. 1993. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages.Proc. Natl. Acad. Sci. USA90:4942–46
Kovacsovics-Bankowski, M., K.L. Rock. 1995. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules.Science267:243–46
Huang, A.Y., P. Golumbek, M. Ahmadzadeh, E. Jaffee, D. Pardoll, H. Levitsky. 1994. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens.Science264:961–65
Sigal, L.J., S. Crotty, R. Andino, K.L. Rock. 1999. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen.Nature398:77–80
Kurts, C., F.R. Carbone, M. Barnden, E. Blanas, J. Allison, W.R. Heath, J.F. Miller. 1997. CD4+ T cell help impairs CD8+ T cell deletion induced by crosspresentation of self-antigens and favors autoimmunity.J. Exp. Med.186:2057– 62
Nouri-Shirazi, M., D. Bell, S. Burkeholder, E. Kraus, J. Davoust, J. Banchereau, A. Palucka. 1999. Dendritic cells capture tumor cell bodies and process/ present their antigens to elicit primary immune responses. Submitted for publication
Regnault, A., D. Lankar, V. Lacabanne, A. Rodriguez, C. Thery, M. Rescigno, T. Saito, S. Verbeek, C. Bonnerot, P. Ricciardi-Castagnoli, S. Amigorena. 1999. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization.J. Exp. Med.189:371–80
Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, S. Amigorena. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.Nat. Med.4:594–600
Chandawarkar, R.Y., M.S. Wagh, P.K. Srivastava. 1999. The dual nature of specific immunological activity of tumorderived gp96 preparations.J. Exp. Med.189:1437–42
Burdin, N., M. Kronenberg. 1999. CD1mediated immune responses to glycolipids.Curr. Opin. Immunol.11:326–31
Porcelli, S.A., R.L. Modlin. 1999. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids.Annu. Rev. Immunol.17:297–329
Kitamura, H., K. Iwakabe, T. Yahata, S. Nishimura, A. Ohta, Y. Ohmi, M. Sato, K. Takeda, K. Okumura, L. Van Kaer, T. Kawano, M. Taniguchi, T. Nishimura. 1999. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells.J. Exp. Med.189:1121–28
Inaba, K., J.P. Metlay, M.T. Crowley, R.M. Steinman. 1990. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ.J. Exp. Med.172:631–40. Erratum. 1990.J. Exp. Med.172(4):1275
Ingulli, E., A. Mondino, A. Khoruts, M.K. Jenkins. 1997. In vivo detection of dendritic cell antigen presentation to CD4(+) T cells.J. Exp. Med.185:2133– 41
Sornasse, T., V. Flamand, G. De Becker, H. Bazin, F. Tielemans, K. Thielemans, J. Urbain, O. Leo, M. Moser. 1992. Antigen-pulsed dendritic cells can efficiently induce an antibody response in vivo.J. Exp. Med.175:15–21
Pulendran, B., J.L. Smith, M. Jenkins, M. Schoenborn, E. Maraskovsky, C.R. Maliszewski. 1998. Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant.J. Exp. Med.188:2075–82
Shimizu, Y., L.G. Guidotti, P. Fowler, F.V. Chisari. 1998. Dendritic cell immunization breaks cytotoxic T lymphocyte tolerance in hepatitis B virus transgenic mice.J. Immunol.161:4520–29
Gong, J., D. Chen, M. Kashiwaba, Y. Li, L. Chen, H. Takeuchi, H. Qu, G.J. Rowse, S.J. Gendler, D. Kufe. 1998. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells.Proc. Natl. Acad. Sci. USA95:6279–83
Steptoe, R.J., F. Fu, W. Li, M.L. Drakes, L. Lu, A.J. Demetris, S. Qian, H.J. McKenna, A.W. Thomson. 1997. Augmentation of dendritic cells in murine organ donors by Flt3 ligand alters the balance between transplant tolerance and immunity.J. Immunol.159:5483–91
Ridge, J.P., E.J. Fuchs, P. Matzinger. 1996. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells.Science271:1723–26
Inaba, K., J.W. Young, R.M. Steinman. 1987. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells.J. Exp. Med.166:182–94
Young, J.W., R.M. Steinman. 1990. Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells.J. Exp. Med.171:1315–32
McCoy, K.D., I.F. Hermans, J.H. Fraser, G. Le Gros, F. Ronchese. 1999. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cellinduced activation and cytotoxicity of CD8(+) T cells independently of CD4(+) T cell help.J. Exp. Med.189:1157–62
Macatonia, S.E., P.M. Taylor, S.C. Knight, B.A. Askonas. 1989. Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro.J. Exp. Med.169:1255–64
Nair, S., F. Zhou, R. Reddy, L. Huang, B.T. Rouse. 1992. Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in vitro.J. Exp. Med.175:609–12
Mehta-Damani, A., S. Markowicz, E.G. Engleman. 1994. Generation of antigenspecific CD8+ CTLs from naive precursors.J. Immunol.153:996–1003
McKinney, E.C., J.W. Streilein. 1989. On the extraordinary capacity of allogeneic epidermal Langerhans cells to prime cytotoxic T cells in vivo.J. Immunol.143:1560–64
Takahashi, H., Y. Nakagawa, K. Yokomuro, J.A. Berzofsky. 1993. Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells.Int. Immunol.5:849–57
Nair, S., J.S. Babu, R.G. Dunham, P. Kanda, R.L. Burke, B.T. Rouse. 1993. Induction of primary, antiviral cytotoxic, and proliferative responses with antigens administered via dendritic cells.J. Virol.67:4062–69
Brossart, P., M.J. Bevan. 1997. Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines.Blood90:1594–99
Rouse, R.J., S.K. Nair, S.L. Lydy, J.C. Bowen, B.T. Rouse. 1994. Induction in vitro of primary cytotoxic T-lymphocyte responses with DNA encoding herpes simplex virus proteins.J. Virol.68:5685– 89
Specht, J.M., G. Wang, M.T. Do, J.S. Lam, R.E. Royal, M.E. Reeves, S.A. Rosenberg, P. Hwu. 1997. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases.J. Exp. Med.186:1213–21
Kaplan, J.M., Q. Yu, S.T. Piraino, S.E. Pennington, S. Shankara, L.A. Woodworth, B.L. Roberts. 1999. Induction of antitumor immunity with dendritic cells transduced with adenovirus vectorencoding endogenous tumor-associated antigens.J. Immunol.163:699–707
Ashley, D.M., B. Faiola, S. Nair, L.P. Hale, D.D. Bigner, E. Gilboa. 1997. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors.J. Exp. Med.186:1177–82
Bhardwaj, N., A. Bender, N. Gonzalez, L.K. Bui, M.C. Garrett, R.M. Steinman. 1994. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells.J. Clin. Invest.94:797–807
Bohm, W., R. Schirmbeck, A. Elbe, K. Melber, D. Diminky, G. Kraal, N. van Rooijen, Y. Barenholz, J. Reimann. 1995. Exogenous hepatitis B surface antigen particles processed by dendritic cells or macrophages prime murine MHC class Irestricted cytotoxic T lymphocytes in vivo.J. Immunol.155:3313–21
Ridge, J.P., F. Di Rosa, P. Matzinger. 1998. A conditioned dendritic cell can be a temporal bridge between a CD4+ Thelper and a T-killer cell.Nature393:474–78
Bennett, S.R., F.R. Carbone, F. Karamalis, R.A. Flavell, J.F. Miller, W.R. Heath. 1998. Help for cytotoxic-T-cell responses is mediated by CD40 signalling.Nature393:478–80
Schoenberger, S.P., R.E. Toes, E.I. van der Voort, R. Offringa, C.J. Melief. 1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions.Nature393:480–83
Ludewig, B., S. Oehen, F. Barchiesi, R.A. Schwendener, H. Hengartner, R.M. Zinkernagel. 1999. Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells.J. Immunol.163:1839–44
Caux, C., B. Vanbervliet, C. Massacrier, M. Azuma, K. Okumura, L.L. Lanier, J. Banchereau. 1994. B70/B7–2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.J. Exp. Med.180:1841– 47
Inaba, K., M. Witmer-Pack, M. Inaba, K.S. Hathcock, H. Sakuta, M. Azuma, H. Yagita, K. Okumura, P.S. Linsley, S. Ikehara, S. Murramatsu, R.J. Hodes, R.M. Steinman. 1994. The tissue distribution of the B7–2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro.J. Exp. Med.180:1849–60
Caux, C., C. Massacrier, B. Vanbervliet, B. Dubois, C. Van Kooten, I. Durand, J. Banchereau. 1994. Activation of human dendritic cells through CD40 cross-linking.J. Exp. Med.180:1263–72
Stuber, E., M. Neurath, D. Calderhead, H.P. Fell, W. Strober. 1995. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells.Immunity2:507–21
Flynn, S., K.M. Toellner, C. Raykundalia, M. Goodall, P. Lane. 1998. CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1.J. Exp. Med.188:297–304
Brocker, T., A. Gulbranson-Judge, S. Flynn, M. Riedinger, C. Raykundalia, P. Lane. 1999. CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles.Eur.J. Immunol.29:1610–16
DeBenedette, M.A., A. Shahinian, T.W. Mak, T.H. Watts. 1997. Costimulation of CD28-T lymphocytes by 4–1BB ligand.J. Immunol.158:551–59
Saoulli, K., S.Y. Lee, J.L. Cannons, W.C. Yeh, A. Santana, M.D. Goldstein, N. Bangia, M.A. DeBenedette, T.W. Mak, Y. Choi, T.H. Watts. 1998. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4–1BB ligand.J. Exp. Med.187:1849–62
Kim, Y.J., S.H. Kim, P. Mantel, B.S. Kwon. 1998. Human 4–1BB regulates CD28 co-stimulation to promote Th1 cell responses.Eur.J. Immunol.28:881–90
Shuford, W.W., K. Klussman, D.D. Tritchler, D.T. Loo, J. Chalupny, A.W. Siadak, T.J. Brown, J. Emswiler, H. Raecho, C.P. Larsen, T.C. Pearson, J.A. Ledbetter, A. Aruffo, R.S. Mittler. 1997. 4– 1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses.J. Exp. Med.186:47–55
Anderson, D.M., E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, L. Galibert. 1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function.Nature390:175–79
Wong, B.R., R. Josien, S.Y. Lee, B. Sauter, H.L. Li, R.M. Steinman, Y. Choi. 1997. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor.J. Exp. Med.186:2075–80
Josien, R., B.R. Wong, H.L. Li, R.M. Steinman, Y. Choi. 1999. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells.J. Immunol.162:2562–68
Macatonia, S.E., N.A. Hosken, M. Litton, P. Vieira, C.S. Hsieh, J.A. Culpepper, M. Wysocka, G. Trinchieri, K.M. Murphy, A. O’Garra. 1995. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells.J. Immunol.154:5071–79
Kadowaki, N., S. Antonenko, S. Ho, M.C. Rissoan, V. Soumelis, S.A. Porcelli, L.L. Lanier, Y.J. Liu. 1999. Human dendritic cell subsets DC1 and DC2 induce NKT cell differentiation into IFN-γ-producing NKT1 versus IL-4-producing NKT2 cells. Submitted for publication
McKenzie, G.J., C.L. Emson, S.E. Bell, S. Anderson, P. Fallon, G. Zurawski, R. Murray, R. Grencis, A.N. McKenzie. 1998. Impaired development of Th2 cells in IL-13-deficient mice.Immunity9:423– 32
Rincon, M., J. Anguita, T. Nakamura, E. Fikrig, R.A. Flavell. 1997. Interleukin (IL)-6 directs the differentiation of IL-4producing CD4+ T cells.J. Exp. Med.185:461–69
Freeman, G.J., V.A. Boussiotis, A. Anumanthan, G.M. Bernstein, X.Y. Ke, P.D. Rennert, G.S. Gray, J.G. Gribben, L.M. Nadler. 1995. B7–1 and B7–2 do not deliver identical costimulatory signals, since B7–2 but not B7–1 preferentially costimulates the initial production of IL4.Immunity2:523–32
Kuchroo, V.K., M.P. Das, J.A. Brown, A.M. Ranger, S.S. Zamvil, R.A. Sobel, H.L. Weiner, N. Nabavi, L.H. Glimcher. 1995. B7–1 and B7–2 costimulatory molecules activate differentially the Th1/ Th2 developmental pathways: application to autoimmune disease therapy.Cell80:707–18
Piemonti, L., P. Monti, P. Allavena, M. Sironi, L. Soldini, B.E. Leone, C. Socci, V. Di Carlo. 1999. Glucocorticoids affect human dendritic cell differentiation and maturation.J. Immunol.162:6473–81
Buelens, C., F. Willems, A. Delvaux, G. Pierard, J.P. Delville, T. Velu, M. Goldman. 1995. Interleukin-10 differentially regulates B7–1 (CD80) and B7–2 (CD86) expression on human peripheral blood dendritic cells.Eur. J. Immunol.25:2668–72
Caux, C., C. Massacrier, B. Vanbervliet, C. Barthelemy, Y.J. Liu, J. Banchereau. 1994. Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells.Int.Immunol.6:1177–85
De Smedt, T., M. Van Mechelen, G. De Becker, J. Urbain, O. Leo, M. Moser. 1997. Effect of interleukin-10 on dendritic cell maturation and function.Eur. J. Immunol.27:1229–35
Kalinski, P., J.H. Schuitemaker, C.M. Hilkens, M.L. Kapsenberg. 1998. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation.J. Immunol.161:2804–9
Liu, L., B.E. Rich, J. Inobe, W. Chen, H.L. Weiner. 1998. Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL4.Int. Immunol.10:1017–26
Takeuchi, M., M.M. Kosiewicz, P. Alard, J.W. Streilein. 1997. On the mechanisms by which transforming growth factor-β 2 alters antigen-presenting abilities of macrophages on T cell activation.Eur. J. Immunol.27:1648–56
Iwasaki, A., B.L. Kelsall. 1999. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells.J. Exp. Med.190:229–40
Viney, J.L., A.M. Mowat, J.M. O’Malley, E. Williamson, N.A. Fanger. 1998. Expanding dendritic cells in vivo enhances the induction of oral tolerance.J. Immunol.160:5815–25
Pape, K.A., A. Khoruts, A. Mondino, M.K. Jenkins. 1997. Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigenactivated CD4+ T cells.J. Immunol.159:591–98
D’Amico, G., G. Bianchi, S. Bernasconi, L. Bersani, L. Piemonti, S. Sozzani, A. Mantovani, P. Allavena. 1998. Adhesion, transendothelial migration, and reverse transmigration of in vitro cultured dendritic cells.Blood92:207–14
Randolph, G.J., S. Beaulieu, S. Lebecque, R.M. Steinman, W.A. Muller. 1998. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking.Science282:480–83
Matzinger, P., S. Guerder. 1989. Does Tcell tolerance require a dedicated antigen-presenting cell?Nature338:74–76
Inaba, M., K. Inaba, M. Hosono, T. Kumamoto, T. Ishida, S. Muramatsu, T. Masuda, S. Ikehara. 1991. Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells.J. Exp. Med.173:549–59
Mazda, O., Y. Watanabe, J. Gyotoku, Y. Katsura. 1991. Requirement of dendritic cells and B cells in the clonal deletion of Mls-reactive T cells in the thymus.J. Exp. Med.173:539–47
Khoury, S.J., L. Gallon, W. Chen, K. Betres, M.E. Russell, W.W. Hancock, C.B. Carpenter, M.H. Sayegh, H.L. Weiner. 1995. Mechanisms of acquired thymic tolerance in experimental autoimmune encephalomyelitis: thymic dendritic-enriched cells induce specific peripheral T cell unresponsiveness in vivo.J. Exp. Med.182:357–66
Brocker, T., M. Riedinger, K. Karjalainen. 1997. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo.J. Exp. Med.185:541–50
Shlomchik, W.D., M.S. Couzens, C.B. Tang, J. McNiff, M.E. Robert, J. Liu, M.J. Shlomchik, S.G. Emerson. 1999. Prevention of graft versus host disease by inactivation of host antigen-presenting cells.Science285:412–15
Starzl, T.E., R.M. Zinkernagel. 1998. Antigen localization and migration in immunity and tolerance.N. Engl. J. Med.339:1905–13
Thomson, A.W., L. Lu, N. Murase, A.J. Demetris, A.S. Rao, T.E. Starzl. 1995. Microchimerism, dendritic cell progenitors and transplantation tolerance.Stem Cells13:622–39
Dubois, B., C. Massacrier, B. Vanbervliet, J. Fayette, F. Briere, J. Banchereau, C. Caux. 1998. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes.J. Immunol.161:2223–31
Dubois, B., B. Vanbervliet, J. Fayette, C. Massacrier, C. Van Kooten, F. Briere, J. Banchereau, C. Caux. 1997. Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes.J. Exp. Med.185:941–51
Fayette, J., B. Dubois, S. Vandenabeele, J.M. Bridon, B. Vanbervliet, I. Durand, J. Banchereau, C. Caux, F. Briere. 1997. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2.J. Exp. Med.185:1909–18
Liu, Y.J., G. Grouard, O. de Bouteiller, J. Banchereau. 1996. Follicular dendritic cells and germinal centers.Int. Rev. Cytol.166:139–79
Chaplin, D.D., Y. Fu. 1998. Cytokine regulation of secondary lymphoid organ development.Curr. Opin. Immunol.10:289–97
Wykes, M., A. Pombo, C. Jenkins, G.G. MacPherson. 1998. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response.J. Immunol.161:1313–19
Grouard, G., I. Durand, L. Filgueira, J. Banchereau, Y.J. Liu. 1996. Dendritic cells capable of stimulating T cells in germinal centres.Nature384:364–67
Szakal, A.K., M.H. Kosco, J.G. Tew. 1989. Microanatomy of lymphoid tissue during humoral immune responses: structure function relationships.Ann. Rev. Immunol.7:91–109
Ohshima, Y., Y. Tanaka, H. Tozawa, Y. Takahashi, C. Maliszewski, G. Delespesse. 1997. Expression and function of OX40 ligand on human dendritic cells.J. Immunol.159:3838–48
Moore, P.A., O. Belvedere, A. Orr, K. Pieri, D.W. LaFleur, P. Feng, D. Soppet, M. Charters, R. Gentz, D. Parmelee, Y. Li, O. Galperina, J. Giri, V. Roschke, B. Nardelli, J. Carrell, S. Sosnovtseva, W. Greenfield, S.M. Ruben, H.S. Olsen, J. Fikes, D.M. Hilbert. 1999. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator.Science285:260–63
Schneider, P., F. MacKay, V. Steiner, K. Hofmann, J.L. Bodmer, N. Holler, C. Ambrose, P. Lawton, S. Bixler, H. AchaOrbea, D. Valmori, P. Romero, C. Werner-Favre, R.H. Zubler, J.L. Browning, J. Tschopp. 1999. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth.J. Exp. Med.189:1747–56
Mueller, C.G., M.C. Rissoan, B. Salinas, S. Ait-Yahia, O. Ravel, J.M. Bridon, F. Briere, S. Lebecque, Y.J. Liu. 1997. Polymerase chain reaction selects a novel disintegrin proteinase from CD40activated germinal center dendritic cells.J. Exp. Med.186:655–63
Shah, P.D. 1987. Dendritic cells but not macrophages are targets for immune regulation by natural killer cells.Cell Immunol.104:440–45
Geldhof, A.B., M. Moser, L. Lespagnard, K. Thielemans, P. De Baetselier. 1998. Interleukin-12-activated natural killer cells recognize B7 costimulatory molecules on tumor cells and autologous dendritic cells.Blood91:196–206
Kawano, T., J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, H. Sato, E. Kondo, M. Harada, H. Koseki, T. Nakayama, Y. Tanaka, M. Taniguchi. 1998. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells.Proc. Natl. Acad. Sci. USA95:5690–93
Fernandez, N.C., A. Lozier, C. Flament, P. Ricciardi-Castagnoli, D. Bellet, M. Suter, M. Perricaudet, T. Tursz, E. Maraskovsky, L. Zitvogel. 1999. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo.Nat. Med.5:405–11
Cayeux, S., G. Richter, C. Becker, A. Pezzutto, B. Dorken, T. Blankenstein. 1999. Direct and indirect T cell priming by dendritic cell vaccines.Eur. J. Immunol.29:225–34
Lynch, D.H., A. Andreasen, E. Maraskovsky, J. Whitmore, R.E. Miller, J.C. Schuh. 1997. Flt3 ligand induces tumor regression and antitumor immune responses in vivo.Nat. Med.3:625–31
Shaw, S.G., A.A. Maung, R.J. Steptoe, A.W. Thomson, N.L. Vujanovic. 1998. Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anticancer and anti-viral therapy.J. Immunol.161:2817–24
Chambers, B.J., M. Salcedo, H.G. Ljunggren. 1996. Triggering of natural killer cells by the costimulatory molecule CD80 (B7–1).Immunity5:311–17
Timmerman, J.M., R. Levy. 1999. Dendritic cell vaccines for cancer immunotherapy.Annu. Rev. Med.50:507–29
Palucka, K., J. Fay, J. Banchereau. 1999. Dendritic cells and tumor immunity.Curr. Opin. Oncol. Endocrine Metabolic Invest. Drug.1:282–90
Darnell, R.B. 1996. Onconeural antigens and the paraneoplastic neurologic disorders: at the intersection of cancer, immunity, and the brain.Proc. Natl. Acad. Sci. USA93:4529–36
Darnell, R.B. 1999. The importance of defining the paraneoplastic neurologic disorders.N. Engl. J. Med.340:1831–33
Gabrilovich, D.I., H.L. Chen, K.R. Girgis, H.T. Cunningham, G.M. Meny, S. Nadaf, D. Kavanaugh, D.P. Carbone. 1996. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells.Nat. Med.2:1096–103. Erratum. 1996.Nat. Med.2(11):1267
Enk, A.H., H. Jonuleit, J. Saloga, J. Knop. 1997. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma.Int. J. Cancer73:309–16
Enk, A.H., J. Saloga, D. Becker, B.P. m. M, J. Knop. 1994. Induction of haptenspecific tolerance by interleukin 10 in vivo.J. Exp. Med.179:1397–402
Steinbrink, K., H. Jonuleit, G. Muller, G. Schuler, J. Knop, A.H. Enk. 1999. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells.Blood93:1634–42
Nair, S.K., S. Hull, D. Coleman, E. Gilboa, H.K. Lyerly, M.A. Morse. 1999. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA.Int. J. Cancer82:121–24
Flamand, V., T. Sornasse, K. Thielemans, C. Demanet, M. Bakkus, H. Bazin, F. Tielemans, O. Leo, J. Urbain, M. Moser. 1994. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo.Eur. J. Immunol.24:605–10
Mayordomo, J.I., T. Zorina, W.J. Storkus, L. Zitvogel, C. Celluzzi, L.D. Falo, C.J. Melief, S.T. Ildstad, W.M. Kast, A.B. Deleo, M.T. Lotze. 1995. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity.Nat. Med.1:1297–302
Paglia, P., C. Chiodoni, M. Rodolfo, M.P. Colombo. 1996. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo.J. Exp. Med.183:317– 22
Porgador, A., E. Gilboa. 1995. Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes.J. Exp. Med.182:255–60
Song, W., H.L. Kong, H. Carpenter, H. Torii, R. Granstein, S. Rafii, M.A. Moore, R.G. Crystal. 1997. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity.J. Exp. Med.186:1247–56
Boczkowski, D., S.K. Nair, D. Snyder, E. Gilboa. 1996. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo.J. Exp. Med.184:465–72
Toes, R.E., E.I. van der Voort, S.P. Schoenberger, J.W. Drijfhout, L. van Bloois, G. Storm, W.M. Kast, R. Offringa, C.J. Melief. 1998. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells.J. Immunol.160:4449–56
Hsu, F.J., C. Benike, F. Fagnoni, T.M. Liles, D. Czerwinski, B. Taidi, E.G. Engleman, R. Levy. 1996. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nat. Med.2:52–58
Nestle, F.O., S. Alijagic, M. Gilliet, Y. Sun, S. Grabbe, R. Dummer, G. Burg, D. Schadendorf. 1998. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.Nat. Med.4:328–32
Murphy, G.P., B.A. Tjoa, S.J. Simmons, J. Jarisch, V.A. Bowes, H. Ragde, M. Rogers, A. Elgamal, G.M. Kenny, O.E. Cobb, R.C. Ireton, M.J. Troychak, M.L. Salgaller, A.L. Boynton. 1999. Infusion of dendritic cells pulsed with HLA-A2specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease.Prostate38:73–78
Dhodapkar, M.V., R.M. Steinman, M. Sapp, H. Desai, C. Fossella, J. Krasovsky, S.M. Donahoe, P.R. Dunbar, V. Cerundolo, D.F. Nixon, N. Bhardwaj. 1999. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells.J. Clin. Invest.104:173–80
Bachmann, M.F., R.M. Zinkernagel, A. Oxenius. 1998. Immune responses in the absence of costimulation: viruses know the trick.J. Immunol.161:5791–94
Roake, J.A., A.S. Rao, P.J. Morris, C.P. Larsen, D.F. Hankins, J.M. Austyn. 1995. Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1.J. Exp. Med.181:2237–47
Yang, R.B., M.R. Mark, A. Gray, A. Huang, M.H. Xie, M. Zhang, A. Goddard, W.I. Wood, A.L. Gurney, P.J. Godowski. 1998. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling.Nature395:284–88
Yoshimura, A., E. Lien, R.R. Ingalls, E. Tuomanen, R. Dziarski, D. Golenbock. 1999. Cutting edge: recognition of grampositive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2.J. Immunol.163:1–5
Schwandner, R., R. Dziarski, H. Wesche, M. Rothe, C.J. Kirschning. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2.J. Biol. Chem.274:17406–9
Urban, B.C., D.J. Ferguson, A. Pain, N. Willcox, M. Plebanski, J.M. Austyn, D.J. Roberts. 1999. Plasmodium falciparuminfected erythrocytes modulate the maturation of dendritic cells.Nature400:73– 77
Hahn, G., R. Jores, E.S. Mocarski. 1998. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells.Proc. Natl. Acad. Sci. USA95:3937–42
Redpath, S., A. Angulo, N.R. Gascoigne, P. Ghazal. 1999. Murine cytomegalovirus infection down-regulates MHC class II expression on macrophages by induction of IL-10.J. Immunol.162:6701–7
Soderberg-Naucler, C., K.N. Fish, J.A. Nelson. 1997. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors.Cell91:119–26
Frankel, S.S., B.M. Wenig, A.P. Burke, P. Mannan, L.D. Thompson, S.L. Abbondanzo, A.M. Nelson, M. Pope, R.M. Steinman. 1996. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid.Science272:115–17
Fugier-Vivier, I., C. Servet-Delprat, P. Rivailler, M.C. Rissoan, Y.J. Liu, C. Rabourdin-Combe. 1997. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells.J. Exp. Med.186:813–23
Grosjean, I., C. Caux, C. Bella, I. Berger, F. Wild, J. Banchereau, D. Kaiserlian. 1997. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells.J. Exp. Med.186:801–12
Choe, H., M. Farzan, Y. Sun, N. Sullivan, B. Rollins, P.D. Ponath, L. Wu, C.R. Mackay, G. LaRosa, W. Newman, N. Gerard, C. Gerard, J. Sodroski. 1996. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates.Cell85:1135–48
Werling, D., J.C. Hope, P. Chaplin, R.A. Collins, G. Taylor, C.J. Howard. 1999. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells.J. Leukocyte Biol.66:50– 58
Cosman, D., N. Fanger, L. Borges. 1999. Human cytomegalovirus, MHC class I and inhibitory signalling receptors: more questions than answers.Immunol. Rev.168:177–85
Pinchuk, L.M., P.S. Polacino, M.B. Agy, S.J. Klaus, E.A. Clark. 1994. The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection.Immunity1:317–25
Pope, M., M.G. Betjes, N. Romani, H. Hirmand, P.U. Cameron, L. Hoffman, S. Gezelter, G. Schuler, R.M. Steinman. 1994. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1.Cell78:389–98
Granelli-Piperno, A., M. Pope, K. Inaba, R.M. Steinman. 1995. Coexpression of NF-γ B/Rel and Sp1 transcription factors in human immunodeficiency virus 1induced, dendritic cell-T-cell syncytia.Proc. Natl. Acad. Sci. USA92:10944–48