Sự tham gia của hệ miễn dịch trong sinh bệnh học của bệnh tâm thần phân liệt: một phân tích tổng hợp các nghiên cứu não sau khi chết

Translational Psychiatry - Tập 7 Số 3 - Trang e1075-e1075
C F M G van Kesteren1, Hendrik Gremmels2, Lot D. de Witte1, Elly M. Hol3, Arthur R. Van Gool4, Peter Falkai5, René S. Kahn1, Iris E. Sommer1
1Department of Psychiatry, Brain Center Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands
2Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
3Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
4Department of Psychiatry, Yulius Mental Health Organization, Barendrecht, The Netherlands
5Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany

Tóm tắt

Tóm tắt

Mặc dù chưa biết chính xác cơ chế bệnh sinh của bệnh tâm thần phân liệt, nhưng các nghiên cứu di truyền, dấu ấn sinh học và hình ảnh cho thấy sự tham gia của hệ miễn dịch. Trong nghiên cứu này, chúng tôi đã thực hiện một cuộc tổng hợp hệ thống và phân tích meta các nghiên cứu điều tra các yếu tố liên quan đến hệ miễn dịch trong các não bộ sau khi chết của bệnh nhân tâm thần phân liệt và các đối chứng khỏe mạnh. Bốn mươi mốt nghiên cứu đã được đưa vào, báo cáo trên 783 bệnh nhân và 762 đối chứng. Chúng tôi đã chia các nghiên cứu này thành hai nhóm: nhóm điều tra các biến đổi mô học của thành phần tế bào và nhóm đánh giá các tham số phân tử; các phân tích meta được thực hiện trên cả hai loại. Ước lượng gộp của chúng tôi về mức độ tế bào cho thấy sự tăng đáng kể về mật độ microglia (P=0.0028) trong não bộ của bệnh nhân tâm thần phân liệt so với các đối chứng, mặc dù có sự không đồng nhất đáng kể giữa các nghiên cứu. Phân tích hồi quy meta về các vùng não cho thấy mức tăng này được quan sát nhất quán nhất ở vỏ não thái dương. Mật độ macroglia (tế bào sao và tế bào hình sao) không khác biệt một cách có ý nghĩa giữa bệnh nhân tâm thần phân liệt và các đối chứng khỏe mạnh. Kết quả từ histology sau khi chết được phản ánh ở mức độ phân tử, nơi chúng tôi quan sát thấy sự gia tăng tổng thể trong việc biểu hiện các gen proinflammatory ở cả mức độ phiên mã và protein (P=0.0052) ở bệnh nhân, trong khi biểu hiện gen chống viêm không khác biệt giữa bệnh tâm thần phân liệt và các đối chứng. Kết quả của phân tích meta này củng cố giả thuyết rằng các thành phần của hệ miễn dịch tham gia vào cơ chế bệnh sinh của bệnh tâm thần phân liệt.

Từ khóa


Tài liệu tham khảo

Ayuso-Mateos JL, Gutierrez-Recacha P, Haro JM, Chisholm D . Estimating the prevalence of schizophrenia in Spain using a disease model. Schizophr Res 2006; 86: 194–201.

Tandon R, Nasrallah HA, Keshavan MS . Schizophrenia, ‘just the facts’ 5. Treatment and prevention. Past, present, and future. Schizophr Res 2010; 122: 1–23.

Saha S, Chant D, McGrath J . A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch Gen Psychiatry 2007; 64: 1123–1131.

Jones CA, Watson DJG, Fone KCF . Animal models of schizophrenia. Br J Pharmacol 2011; 164: 1162–1194.

Roberts GW, Bruton CJ . Notes from the graveyard: neuropathology and schizophrenia. Neuropathol Appl Neurobiol 1990; 16: 3–16.

Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016; 530: 177–183.

Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB . Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry 2011; 168: 1303–1310.

Brown AS, Derkits EJ . Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 2010; 167: 261–280.

Torrey EF, Bartko JJ, Lun Z-R, Yolken RH . Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schizophr Bull 2007; 33: 729–736.

van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64: 820–822.

Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein HC . Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801–1807.

Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET Brain Imaging Study. Am J Psychiatry 2016; 173: 44–52.

Schafer DP, Stevens B . Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol 2013; 23: 1034–1040.

Hol EM, Pekny M . Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015; 32: 121–130.

Shatz CJ . MHC class I: an unexpected role in neuronal plasticity. Neuron 2009; 64: 40–45.

McAllister AK . Major histocompatibility complex I in brain development and schizophrenia. Biol Psychiatry 2014; 75: 262–268.

Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ . Functional requirement for class I MHC in CNS development and plasticity. Science 2000; 290: 2155–2159.

Moher D, Liberati A, Tetzlaff J, Altman DG PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62: 1006–1012.

Lipsey MW, Wilson DB . Practical Meta-analysis. Sage Publications: Thousand Oaks, CA, 2001.

Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA, Verhaar MC . Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis Model Mech 2015; 8: 281–293.

Viechtbauer W . Conducting meta-analyses in R with metafor package. J Stat Softw 2010; 36.

Nakagawa S, Santos ESA . Methodological issues and advances in biological meta-analysis. Evol Ecol 2012; 1253–1274.

Konstantopoulos S . Fixed effects and variance components estimation in three‐level meta‐analysis. Res Synth Methods 2011; 2: 61–76.

Higgins JPT, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560.

Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.

Duval S, Tweedie R . Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455–463.

Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immunity 2012; 26: 1273–1279.

Trepanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP . Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 2016; 21: 1009–1026.

Golub R, Cumano A . Embryonic hematopoiesis. Blood Cells Mol Dis 2013; 51: 226–231.

Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 2014; 211: 1533–1549.

Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang L-C, Means TK et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 2013; 16: 1896–1905.

Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 2014; 17: 131–143.

Pong WW, Walker J, Wylie T, Magrini V, Luo J, Emnett RJ et al. F11R is a novel monocyte prognostic biomarker for malignant glioma. PLoS ONE 2013; 8: e77571.

Bernstein H-G, Hildebrandt J, Dobrowolny H, Steiner J, Bogerts B, Pahnke J . Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula. Schizophr Res 2016; 177: 52–58.

Kuehne LK, Reiber H, Bechter K, Hagberg L, Fuchs D . Cerebrospinal fluid neopterin is brain-derived and not associated with blood-CSF barrier dysfunction in non-inflammatory affective and schizophrenic spectrum disorders. J Psychiatr Res 2013; 47: 1417–1422.

Wierzba-Bobrowicz T, Lewandowska E . Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 2005; 43: 81–89.

van der Doef TF, de Witte LD, Sutterland AL, Jobse E, Yaqub M, Boellaard R et al. In vivo (R)-[(11)C]PK11195 PET imaging of 18 kDa translocator protein in recent onset psychosis. NPJ Schizophr 2016; 2: 16031.

Kenk M, Selvanathan T, Rao N, Suridjan I, Rusjan P, Remington G et al. Imaging neuroinflammation in gray and white matter in schizophrenia: an in vivo PET study with [18F]-FEPPA. Schizophr Bull 2015; 41: 85–93.

Hafizi S, Tseng H-H, Rao N, Selvanathan T, Kenk M, Bazinet RP et al. Imaging microglial activation in untreated first-episode psychosis: a PET Study with [(18)F]FEPPA. Am J Psychiatry 2016; 174: 118–124.

Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M et al. In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [(11)C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry 2016; 6: e777.

Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD . Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 2016; 233: 1637–1650.

Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB . Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry 2014; 71: 1121–1128.

van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 2015; 21: 547–573.

van Lutterveld R, Sommer IEC, Ford JM . The neurophysiology of auditory hallucinations—a historical and contemporary review. Front Psychiatry 2011; 2: 28.

Pasternak O, Westin C-F, Dahlben B, Bouix S, Kubicki M . The extent of diffusion MRI markers of neuroinflammation and white matter deterioration in chronic schizophrenia. Schizophr Res 2015; 161: 113–118.

Zhang D, Hu X, Qian L, O'Callaghan JP, Hong J-S . Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010; 41: 232–241.

Schmitt A, Steyskal C, Bernstein H-G, Schneider-Axmann T, Parlapani E, Schaeffer EL et al. Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 2009; 117: 395–407.

Catts VS, Wong J, Fillman SG, Fung SJ, Shannon Weickert C . Increased expression of astrocyte markers in schizophrenia: Association with neuroinflammation. Aust N Z J Psychiatry 2014; 48: 722–734.

Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 115–121.

Rao JS, Kim H-W, Harry GJ, Rapoport SI, Reese EA . Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. Schizophr Res 2013; 147: 24–31.

Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 206–214.

Fillman SG, Sinclair D, Fung SJ, Webster MJ, Shannon Weickert C . Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry 2014; 4: e365.

Toyooka K, Watanabe Y, Iritani S, Shimizu E, Iyo M, Nakamura R et al. A decrease in interleukin-1 receptor antagonist expression in the prefrontal cortex of schizophrenic patients. Neurosci Res 2003; 46: 299–307.

Volk DW, Chitrapu A, Edelson JR, Roman KM, Moroco AE, Lewis DA . Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry 2015; 172: 1112–1121.

Sirota P, Schild K, Elizur A, Djaldetti M, Fishman P . Increased interleukin-1 and interleukin-3 like activity in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19: 75–83.

Söderlund J, Schröder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H et al. Activation of brain interleukin-1beta in schizophrenia. Mol Psychiatry 2009; 14: 1069–1071.

Xu M, He L . Convergent evidence shows a positive association of interleukin-1 gene complex locus with susceptibility to schizophrenia in the Caucasian population. Schizophr Res 2010; 120: 131–142.

Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B . Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

Kubota M, van Haren NEM, Haijma SV, Schnack HG, Cahn W, Hulshoff Pol HE et al. Association of IQ changes and progressive brain changes in patients with schizophrenia. JAMA Psychiatry 2015; 72: 803–812.

Hayes LN, Severance EG, Leek JT, Gressitt KL, Rohleder C, Coughlin JM et al. Inflammatory molecular signature associated with infectious agents in psychosis. Schizophr Bull 2014; 40: 963–972.

Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 2008; 1239: 235–248.

Norden DM, Godbout JP . Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 2013; 39: 19–34.

Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008; 42: 151–157.

Mrozek S, Vardon F, Geeraerts T . Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 2012; 2012: 989487–13.

Olah M, Raj D, Brouwer N, De Haas AH, Eggen BJL, Dunnen Den WFA et al. An optimized protocol for the acute isolation of human microglia from autopsy brain samples. Glia 2012; 60: 96–111.

Guimbaud R, Bertrand V, Chauvelot-Moachon L, Quartier G, Vidon N, Giroud JP et al. Network of inflammatory cytokines and correlation with disease activity in ulcerative colitis. Am J Gastroenterol 1998; 93: 2397–2404.

Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA . Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990; 75: 40–47.

Wong H-L, Pfeiffer RM, Fears TR, Vermeulen R, Ji S, Rabkin CS . Reproducibility and correlations of multiplex cytokine levels in asymptomatic persons. Cancer Epidemiol Biomarkers Prev 2008; 17: 3450–3456.

Kowalski J, Blada P, Kucia K, Madej A, Herman ZS . Neuroleptics normalize increased release of interleukin- 1 beta and tumor necrosis factor-alpha from monocytes in schizophrenia. Schizophr Res 2001; 50: 169–175.

Maes M . Introduction to the special section. Int J Neuropsychopharmacol 2002; 5: 329–331.

Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY . Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 1995; 29: 141–152.

Maes M, Bosmans E, Kenis G, De Jong R, Smith RS, Meltzer HY . In vivo immunomodulatory effects of clozapine in schizophrenia. Schizophr Res 1997; 26: 221–225.

Ziedonis D, Hitsman B, Beckham JC, Zvolensky M, Adler LE, Audrain-McGovern J et al. Tobacco use and cessation in psychiatric disorders: National Institute of Mental Health report. Nicotine Tob Res 2008; 10: 1691–1715.

de Leon J, Diaz FJ . A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res 2005; 76: 135–157.

Kano S-I, Nwulia E, Niwa M, Chen Y, Sawa A, Cascella N . Altered MHC class I expression in dorsolateral prefrontal cortex of nonsmoker patients with schizophrenia. Neurosci Res 2011; 71: 289–293.

Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M . Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders—a systematic review and meta-analysis. Schizophr Bull 2013; 39: 306–318.

Leonard BE, Schwarz M, Myint A-M . The metabolic syndrome in schizophrenia: is inflammation a contributing cause? J Psychopharmacol (Oxford) 2012; 26: 33–41.

de Witte L, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS et al. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 2014; 154: 23–29.

Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS et al. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca's area volume. Mol Psychiatry 2015; 21: 1090–1098.

Laan W, Selten J-P, Grobbee DE, Smeets H, Kahn RS, Burger H . Non-steroidal anti-inflammatory drugs and the risk of psychosis. Eur Neuropsychopharmacol 2007; 17: 309–311.

Laan W, Smeets H, de Wit NJ, Kahn RS, Grobbee DE, Burger H . Glucocorticosteroids associated with a decreased risk of psychosis. J Clin Psychopharmacol 2009; 29: 288–290.

Sommer IE, van Westrhenen R, Begemann MJH, de Witte LD, Leucht S, Kahn RS . Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 2014; 40: 181–191.