Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yingling, J.M., Blanchard, K.L. & Sawyer, J.S. Development of TGF-β signalling inhibitors for cancer therapy. Nat. Rev. Drug Discov. 3, 1011–1022 (2004).
Bierie, B. & Moses, H.L. Tumour microenvironment: TGF-β: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6, 506–520 (2006).
Dumont, N. & Arteaga, C.L. Targeting the TGF-β signaling network in human neoplasia. Cancer Cell 3, 531–536 (2003).
Yin, J.J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).
Padua, D. et al. TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).
Kang, Y. et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. USA 102, 13909–13914 (2005).
Muraoka-Cook, R.S. et al. Activated type I TGF-β receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25, 3408–3423 (2006).
Mundy, G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).
Guise, T.A. et al. Molecular mechanisms of breast cancer metastases to bone. Clin. Breast Cancer 5 Suppl, S46–S53 (2005).
Pfeilschifter, J. & Mundy, G.R. Modulation of type β transforming growth factor activity in bone cultures by osteotropic hormones. Proc. Natl. Acad. Sci. USA 84, 2024–2028 (1987).
Dallas, S.L., Rosser, J.L., Mundy, G.R. & Bonewald, L.F. Proteolysis of latent transforming growth factor-β (TGF-β)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-β from bone matrix. J. Biol. Chem. 277, 21352–21360 (2002).
Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).
Minn, A.J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).
Zawel, L. et al. Human SMAD3 and SMAD4 are sequence-specific transcription activators. Mol. Cell 1, 611–617 (1998).
Lin, A.H., Luo, J., Mondshein, L.H., ten Dijke, P., Vivien, D., Contag, C.H. & Wyss-Coray, T. Global analysis of Smad2/3-dependent TGF-β signaling in living mice reveals prominent tissue-specific responses to injury. J. Immunol. 175, 547–554 (2005).
Melisi, D. et al. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer Ther. 7, 829–840 (2008).
Li, H.Y. et al. Optimization of a dihydropyrrolopyrazole series of transforming growth factor-β type I receptor kinase domain inhibitors: discovery of an orally bioavailable transforming growth factor-β receptor type I inhibitor as antitumor agent. J. Med. Chem. 51, 2302–2306 (2008).
Russell, R.G. et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann. NY Acad. Sci. 1117, 209–257 (2007).
Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7, 5–15 (2005).
Gelovani Tjuvajev, J. & Blasberg, R.G. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 3, 327–332 (2003).
Deroose, C.M. et al. Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT and bioluminescence imaging. J. Nucl. Med. 48, 295–303 (2007).
Hoffman, R.M. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Clin. Exp. Metastasis 26, 345–355 (2009).
Fritz, V. et al. Micro-CT combined with bioluminescence imaging: a dynamic approach to detect early tumor-bone interaction in a tumor osteolysis murine model. Bone 40, 1032–1040 (2007).
Body, J.J.D.I., Lichinitzer, M., Lazarev, A., Pecherstorfer, M., Bell, R., Tripathy, D. & Bergstrom, B. Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomised, placebo-controlled phase III studies. Br. J. Cancer 90, 1133–1137 (2004).
Tripathy, D., Lichinitzer, M., Lazarev, A., MacLachlan, S.A., Apffelstaedt, J., Budde, M., Bergstrom, B. & MF 4434 Study Group. Oral ibandronate for the treatment of metastatic bone disease in breast cancer: efficacy and safety results from a randomized, double-blind, placebo-controlled trial. Ann. Oncol. 15, 743–750 (2004).
El-Abdaimi, K. et al. Pamidronate prevents the development of skeletal metastasis in nude mice transplanted with human breast cancer cells by reducing tumor burden within bone. Int. J. Oncol. 22, 883–890 (2003).
van der Pluijm, G. et al. Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res. 65, 7682–7690 (2005).
Coleman, R.E., Purohit, O.P., Vinholes, J.J. & Zekri, J. High dose pamidronate. Cancer 80, 1686–1690 (1997).
Coleman, R. On the horizon: can bisphosphonates prevent bone metastases? Breast 16 Suppl 3, S21–S27 (2007).
Diel, I.J. et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N. Engl. J. Med. 339, 357–363 (1998).
Ray, P., De, A., Min, J.J., Tsien, R.Y. & Gambhir, S.S. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64, 1323–1330 (2004).
Voorhoeve, P.M. & Agami, R. The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4, 311–319 (2003).