Imaging of thyroid tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice

BMC Medical Imaging - Tập 13 - Trang 1-9 - 2013
Marcello Mancini1,2, Adelaide Greco3,4, Giuliana Salvatore5, Raffaele Liuzzi1, Gennaro Di Maro6, Emilia Vergara7, Gennaro Chiappetta8, Rosa Pasquinelli8, Arturo Brunetti3,9, Marco Salvatore3
1Institute of Biostructure and Bioimaging, Italian National Research Council (CNR), Naples, Italy
2SDN Foundation IRCCS, Naples, Italy
3Dipartimento Di Scienze Biomediche Avanzate, Università Degli Studi Di Napoli “Federico II”, Naples, Italy
4CEINGE – Biotecnologie Avanzate S.C.a.R.L., Naples, Italy
5Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università degli Studi di Napoli “Parthenope”, Naples, Italy
6Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Naples, 80131, Italy
7Dipartimento di Scienze Biomediche Avanzate - Università degli Studi di Napoli “Federico II”, Naples, Italy
8Functional Genomic Unit, Istituto Nazionale Tumori G. Pascale, Naples, Italy
9CEINGE-Biotecnologie Avanzate S.C.a R.L., Naples, Italy

Tóm tắt

To evaluate whether Contrast Enhanced Ultrasund (CEUS) with microbubbles (MBs) targeted to VEGFR-2 is able to characterize in vivo the VEGFR-2 expression in the tumor vasculature of a mouse model of thyroid cancer (Tg-TRK-T1). Animal protocol was approved by Institutional committee on Laboratory Animal Care. Contrast-enhanced ultrasound imaging with MBs targeted with an anti-VEGFR-2 monoclonal antibody (UCAVEGFR-2) and isotype control antibody (UCAIgG) was performed in 7 mice with thyroid carcinoma, 5 mice with hyperplasia or benign thyroid nodules and 4 mice with normal thyroid. After ultrasonography, the tumor samples were harvested for histological examination and VEGFR-2 expression was tested by immunohistochemistry. Data were reported as median and range. Paired non parametric Wilcoxon’s test and ANOVA of Kruskal-Wallis were used. The correlation between the contrast signal and the VEGFR-2 expression was assessed by the Spearman coefficient. The Video intensity difference (VID) caused by backscatter of the retained UCAVEGFR-2 was significantly higher in mice harboring thyroid tumors compared to mice with normal thyroids (P < 0.01) and to mice harboring benign nodules (P < 0.01). No statistically significant differences of VID were observed in the group of mice carrying benign nodules compared to mice with normal thyroids. Moreover in thyroid tumors VID of retained VEGFR-2-targeted UCA was significantly higher than that of control UCAIgG (P <0.05). Results of immunohistochemical analysis confirmed VEGFR-2 overexpression. The magnitude of the molecular ultrasonographic signal from a VEGFR-2-targeted UCA retained by tissue correlates with VEGFR-2 expression determined by immunohistochemistry (rho 0.793, P=0.0003). We demonstrated that CEUS with UCAVEGFR-2 might be used for in vivo non invasive detection and quantification of VEGFR-2 expression in thyroid cancer in mice, and to differentiate benign from malignant thyroid nodules.

Tài liệu tham khảo

Klener P: Angiogenesis as part of the tumor “ecosystem” and possibilities to influence it. Klin Onkol. 2010, 23 (1): 14-20. Pandya NM, Dhalla NS, Santani DD: Angiogenesis–a new target for future therapy. Vascul Pharmacol. 2006, 44 (5): 265-274. 10.1016/j.vph.2006.01.005. Sato Y: Molecular diagnosis of tumor angiogenesis and anti-angiogenic cancer therapy. Int J Clin Oncol. 2003, 8 (4): 200-206. 10.1007/s10147-003-0342-8. Sitohy B, Nagy JA, Dvorak HF: Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012, 72 (8): 1909-1914. 10.1158/0008-5472.CAN-11-3406. Kojic KL, Kojic SL, Wiseman SM: Differentiated thyroid cancers: a comprehensive review of novel targeted therapies. Expert Rev Anticancer Ther. 2012, 12 (3): 345-357. 10.1586/era.12.8. Bertolini F, Marighetti P, Martin-Padura I, Mancuso P, Hu-Lowe DD, Shaked Y, D’Onofrio A: Anti-VEGF and beyond: shaping a new generation of anti-angiogenic therapies for cancer. Drug Discov Today. 2011, 16 (23–24): 1052-1060. Turner HE, Harris AL, Melmed S, Wass JA: Angiogenesis in endocrine tumors. Endocr Rev. 2003, 24 (5): 600-603. 10.1210/er.2002-0008. Warram JM, Sorace AG, Saini R, Umphrey HR, Zinn KR, Hoyt K: A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med. 2011, 30: 921-931. Ramsden JD, Buchanan MA, Egginton S, Watkinson JC, Mautner V, Eggo MC: Complete inhibition of goiter in mice requires combined gene therapy modification of angiopoietin, vascular endothelial growth factor, and fibroblast growth factor signaling. Endocrinology. 2005, 146 (7): 2895-2902. 10.1210/en.2005-0168. Nagura S, Katoh R, Miyagi E, Shibuya M, Kawaoi A: Expression of vascular endothelial growth factor (VEGF) and VEGF receptor-1 (Flt-1) in Graves disease possibly correlated with increased vascular density. Hum Pathol. 2001, 32 (1): 10-17. 10.1053/hupa.2001.21139. Nikiforov YE, Nikiforova MN: Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011, 7 (10): 569-580. 10.1038/nrendo.2011.142. Greco A, Miranda C, Pierotti MA: Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Molecular and cellular endocrinology. 2010, 321: 44-49. 10.1016/j.mce.2009.10.009. Russell JP, Powell DJ, Cunnane M, Greco A, Portella G, Santoro M, Fusco A, Rothstein JL: The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 2000, 19: 5729-5735. 10.1038/sj.onc.1203922. Kim CS, Zhu X: Lessons from mouse models of thyroid cancer. Thyroid. 2009, 19: 1317-1331. 10.1089/thy.2009.1609. Klein M, Catargi B: VEGF in physiological process and thyroid disease. Ann Endocrinol. 2007, 68 (6): 438-448. 10.1016/j.ando.2007.09.004. Góth MI, Hubina E, Raptis S, Nagy GM, Tóth BE: Physiological and pathological angiogenesis in the endocrine system. Microsc Res Tech. 2003, 60 (1): 98-106. 10.1002/jemt.10248. Salajegheh A, Smith RA, Kasem K, Gopalan V, Nassiri MR, William R, Lam AK: Single nucleotide polymorphisms and mRNA expression of VEGF-A in papillary thyroid carcinoma: potential markers for aggressive phenotypes. Eur J Surg Oncol. 2011, 37 (1): 93-99. 10.1016/j.ejso.2010.10.010. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA: Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab. 2000, 85 (3): 1159-1162. 10.1210/jc.85.3.1159. Risau W: Angiogenic growth factors. Prog Growth Factor Res. 1990, 2 (1): 71-79. 10.1016/0955-2235(90)90010-H. Ellegala DB, Leong-Poi H, Carpenter JE, Kaul S, Shaffrey ME, Sklenar J, Lindner JR: Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation. 2003, 108: 336-341. 10.1161/01.CIR.0000080326.15367.0C. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA: Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res. 2007, 13: 323-330. 10.1158/1078-0432.CCR-06-1313. Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM, Chen IY, Chen X, Gambhir SS: US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology. 2008, 2: 508-518. Lee DJ, Lyshchik A, Huamani J, Hallahan DE, Fleischer AC: Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level ofVEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med. 2008, 27 (6): 855-866. Delorme S, Krix M: Contrast-enhanced ultrasound for examining tumor biology. Cancer Imaging. 2006, 6: 148-152. 10.1102/1470-7330.2006.0023. Klasa-Mazurkiewicz D, Jarząb M, Milczek T, Lipińska B, Emerich J: Clinical significance of VEGFR-2 and VEGFR-3 expression in ovarian cancer patients. Pol J Pathol. 2011, 62 (1): 31-40. Büchler P, Reber HA, Büchler MW, Friess H, Hines OJ: VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg. 2002, 236 (6): 738-749. 10.1097/00000658-200212000-00006. Office of Animal Care and Use (OACU) of the National Institutes of Health (NIH): Animal Research Advisory Committee (ARAC). http://oacu.od.nih.gov/ARAC/, Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA: An ad hoc committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010, 102: 1555-1577. 10.1038/sj.bjc.6605642. Zhou YQ, Foster FS, Qu DW, Zhang M, Harasiewicz KA, Adamson SL: Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood. Physiol Genomics. 2002, 10 (2): 113-126. Greco A, Mancini M, Gargiulo S, Gramanzini M, Claudio PP, Brunetti A, Salvatore M: Ultrasound biomicroscopy in small animal research: applications in molecular and pre-clinical imaging. Journal of Biomedicine and Biotechnology. 2012, Article ID 519238: 14- The Australian and New Zealand Council for the Care of Animals in Research and Teaching Ltd (ANZCCART): Australia: The University of Adelaide, http://www.adelaide.edu.au/ANZCCART/publications/, Mancini M, Vergara E, Salvatore G, Greco A, Troncone G, Affuso A, Liuzzi R, Salerno P, Scotto di Santolo M, Santoro M, Brunetti A, Salvatore M: Morphological ultrasound micro-imaging of thyroid in living mice. Endocrinology. 2009, 150 (10): 4810-4815. 10.1210/en.2009-0417. Jokinen MP, Botts S: WHO International Agency for Researchon Cancer. Pathology of tumours in laboratory animals: tumours of the mouse Vol 2. Edited by: Turusob VS, Mohr U. 1994, Lyon, France: IARC Scientific Publication, 565-594. 2 Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, Woenne EC, Jenne JW, Maurer M, Kauffmann GW, Semmler W, Kiessling F: Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther. 2008, 7 (1): 101-109. Hodivala-Dilke K: Alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol. 2008, 20 (5): 514-519. 10.1016/j.ceb.2008.06.007. Ferrara N: Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004, 25 (4): 581-611. 10.1210/er.2003-0027. ten Dijke P, Goumans MJ, Pardali E: Endoglin in angiogenesis and vascular diseases. Angiogenesis. 2008, 11 (1): 79-89. 10.1007/s10456-008-9101-9. Sledge GW, Rugo HS, Burstein HJ: The role of angiogenesis inhibition in the treatment of breast cancer. Clin Adv Hematol Oncol. 2006, 4 (10 Suppl 21): 1-10. Khosravi Shahi P, Soria Lovelle A, Pérez Manga G: Tumoral angiogenesis and breast cancer. Clin Transl Oncol. 2009, 11 (3): 138-142. 10.1007/S12094-009-0329-7. Gómez-Raposo C, Mendiola M, Barriuso J, Casado E, Hardisson D, Redondo A: Angiogenesis and ovarian cancer. Clin Transl Oncol. 2009, 11 (9): 564-571. 10.1007/s12094-009-0406-y. Bednarek W, Mazurek M, Cwiklińska A, Barczyński B: Expression of selected angiogenesis markers and modulators in pre-, peri- and postmenopausal women with ovarian cancer. Ginekol Pol. 2009, 80 (2): 93-98. Saif MW: Primary pancreatic lymphomas. JOP. 2006, 7 (3): 262-273. Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005, 23 (5): 1011-1027. Lindner JR: Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov. 2004, 3 (6): 527-532. 10.1038/nrd1417. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS: Molecular imaging in drug development. Nat Rev Drug Discov. 2008, 7 (7): 591-607. 10.1038/nrd2290. Pysz MA, Foygel K, Rosenberg J, Gambhir SS, Schneider M, Willmann JK: Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology. 2010, 256 (2): 519-527. 10.1148/radiol.10091858. Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS: Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med. 2010, 51 (3): 433-440. 10.2967/jnumed.109.068007. Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, Kaul S: Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation. 2000, 102 (22): 2745-2750. 10.1161/01.CIR.102.22.2745. Sorace AG, Saini R, Mahoney M, Hoyt K: Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med. 2012, 31 (10): 1543-1550. Willmann JK, Cheng Z, Davis C: Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology. 2008, 249: 212-219. 10.1148/radiol.2491072050. Klibanov AL, Rasche PT, Hughes MS, Wojdyla JK, Galen KP, Wible JH, Brandenburger GH: Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Invest Radiol. 2004, 39 (3): 187-195. 10.1097/01.rli.0000115926.96796.75. Lucidarme O, Kono Y, Corbeil J, Choi SH, Golmard JL, Varner J, Mattrey RF: Angiogenesis: noninvasive quantitative assessment with contrast-enhanced functional US in murine model. Radiology. 2006, 239 (3): 730-739. 10.1148/radiol.2392040986. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2342/13/31/prepub