Imaging‐based enrichment criteria using deep learning algorithms for efficient clinical trials in mild cognitive impairment
Tóm tắt
Tài liệu tham khảo
10.1016/j.neurobiolaging.2012.03.006
10.1016/j.neurobiolaging.2013.09.001
10.1136/jnnp.2005.072926
10.1055/s-2006-956752
10.1016/j.neurobiolaging.2011.09.008
10.1016/j.jalz.2011.03.008
10.1111/j.1600-0447.2008.01326.x
10.1016/j.neurobiolaging.2010.04.036
10.1016/j.jalz.2013.05.1776
10.1016/j.neuroimage.2010.10.081
10.1016/j.neuroimage.2011.01.008
10.1016/j.jalz.2013.01.010
Hinrichs C, 2012, Machine Learning and Interpretation in Neuroimaging, 124, 10.1007/978-3-642-34713-9_16
10.1016/j.neurobiolaging.2010.04.022
Escudero J, 2011, Machine learning classification of MRI features of Alzheimer's disease and mild cognitive impairment subjects to reduce the sample size in clinical trials, Conf Proc IEEE Eng Med Biol Soc, 2011, 7957
10.1016/j.neurobiolaging.2013.09.039
Bengio Y, 2009, Learning deep architectures for AI. Foundations and trends in machine learning, 1, 10.1561/9781601982957
10.1109/TPAMI.2013.50
10.1093/brain/awm319
Vincent P, 2010, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J Mach Learn Res, 11, 3371
Suk HI, 2013, Deep learning‐based feature representation for AD/MCI classification, Med Image Comput Comput Assist Interv, 16, 583
Ithapu VK, 2014, Randomized denoising autoencoders for smaller and efficient imaging based AD clinical trials, Med Image Comput Comput Assist Interv, 17, 470
Dietterich TG, 2000, Ensemble methods in machine learning. Multiple classifier systems, 1
Rosner B, 1990, Fundamentals of Biostatistics
10.1016/S1474-4422(12)70291-0
10.1016/j.jalz.2013.05.1769
10.1016/j.jalz.2014.03.005
10.1001/archneur.61.12.1930