Hình ảnh biểu hiện E-selectin sau chấn thương não ở chuột thực nghiệm bằng tác nhân tương phản USPIO có mục tiêu

Catherine Chapon1,2, Florence Franconi3, Franck Lacoeuille1,2, François Hindré1,2, Patrick Saulnier1,2, Jean-Pierre Benoit1,2, Jean-Jacques Le Jeune1,2, Laurent Lemaire1,2
1INSERM U 646, Ingénierie de la Vectorisation Particulaire, Angers, France
2Université d’Angers, UMR-S646, Angers, France
3Service Commun d’Analyses Spectroscopiques, Université d’Angers, Angers, France

Tóm tắt

Mục tiêu của nghiên cứu này là lập bản đồ biểu hiện E-selectin trong mô hình chấn thương não bằng cách sử dụng một tác nhân tương phản MR được thiết kế mới. Các lõi sắt, chịu trách nhiệm cho hiệu ứng nhạy cảm và do đó được sử dụng làm tác nhân tương phản T2*, cần được phủ lớp để ổn định và cần được nhắm mục tiêu để phát huy hiệu quả. Chúng tôi đã thiết kế một phân tử phủ bao gồm, ở một đầu, bisphosphonate để đảm bảo việc neo giữ lớp phủ trên lõi sắt và, ở đầu kia, heptapeptide được định nghĩa bởi Fukuda, nổi tiếng trong việc nhắm vào các vị trí gắn kết selectin. Các hạt nano được tổng hợp có khả năng nhắm mục tiêu không xâm lấn tới tổn thương não do chấn thương, gây ra sự giảm cụ thể T2* khoảng 25% kéo dài ít nhất 70 phút sau khi tiêm tác nhân tương phản được nhắm mục tiêu.

Từ khóa

#E-selectin #chấn thương não #tác nhân tương phản MR #hạt nano #bisphosphonate #heptapeptide

Tài liệu tham khảo

Thurman D, Alverson C, Dunn K, Guerrero J, JE S (1999) Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 14: 602–615 Kay A, Teasdale G (2001) Head injury in the United Kingdom. World J Surg 25: 1210–1220 Mathe J, Richard I, Rome J (2005) Serious brain injury and public health, epidemiologic and financial considerations, comprehensive management and care. Ann Fr Anesth Reanim 24: 688–694 Klatzo I (1987) Pathophysiological aspects of brain edema. Acta Neuropathol (Berl) 72: 236–239 Kawamata T, Katayama Y, Hovda D, Yoshino A, Becker D (1995) Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 674: 196–204 Reinert M, Khaldi A, Zauner A, Doppenberg E, Choi S, Bullock R (2000) High level of extracellular potassium and its correlates after severe head injury: relationship to high intracranial pressure. J Neurosurg 93: 800–807 Stanimirovic D, Satoh K (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol 10: 113–126 Frijns C, Kappelle L (2002) Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 33: 2115–2122 Danton G, Dietrich W (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62: 127–136 Williams A, Wei H, Dave J, Tortella F (2007) Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation 4: 17 Wang Q, Tang X, Yenari M (2007) The inflammatory response in stroke. J Neuroimmunol 184: 53–68 McEver R (1997) Selectin–carbohydrate interactions during inflammation and metastasis. Glycoconj J 14: 585–591 Stoolman L (1989) Adhesion molecules controlling lymphocyte migration. Cell 56: 907–910 Phillips M, Nudelman E, Gaeta F, Perez M, Singhal A, Hakomori S, Paulson J (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250: 1130–1132 Ley K (2003) Sulfated sugars for rolling lymphocytes. J Exp Med 198: 1285–1288 Kneuer C, Ehrhardt C, Radomski M, Bakowsky U (2006) Selectins-potential pharmacological targets. Drug Discov Today 11: 1034–1040 Kang H, Josephson L, Petrovsky A, Weissleder R, Bogdanov AJ (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 13: 122–127 Sibson N, Blamire A, Bernades-Silva M, Laurent S, Boutry S, Muller R, Styles P, Anthony D (2004) MRI detection of early endothelial activation in brain inflammation. Magn Reson Med 51: 248–252 Barber P, Foniok T, Kirk D, Buchan A, Laurent S, Boutry S, Muller R, Hoyte L, Tomanek B, Tuor U (2004) MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol 56: 116–120 Boutry S, Burtea C, Laurent S, Toubeau G, Vander Elst L, Muller R (2005) Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53: 800–807 Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L (2005) Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 7: 892–899 Reynolds P, Larkman D, Haskard D, Hajnal J, Kennea N, George A, Edwards A (2006) Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology 241: 469–476 Canet-Soulas E, Letourneur D (2007) Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Mag Reson Mater Phys 20: 129–142 Chapman P, Jamar F, Harrison A, Binns R, Peters A, Haskard D (1994) Noninvasive imaging of E-selectin expression by activated endothelium in urate crystal-induced arthritis. Arthritis Rheum 37: 1752–1756 Zinn K, Chaudhuri T, Smyth C, Wu Q, Liu H, Fleck M, Mountz J, Mountz J (1999) Specific targeting of activated endothelium in rat adjuvant arthritis with a 99mTc-radiolabeled E-selectin-binding peptide. Arthritis Rheum 42: 641–649 Runnels J, Zamiri P, Spencer J, Veilleux I, Wei X, Bogdanov A, Lin C (2006) Imaging molecular expression on vascular endothelial cells by in vivo immunofluorescence microscopy. Mol Imaging 5: 31–40 Lindner J, Song J, Christiansen J, Klibanov A, Xu F, Ley K (2001) Sound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104: 2107–2112 Weller G, Villanueva F, Tom E, Wagner W (2003) Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnol Bioeng 92: 780–788 Ham A, Goetz D, Klibanov A, Lawrence M (2007) Microparticle adhesive dynamics and rolling mediated by selectin-specific antibodies under flow. Biotechnol Bioeng 96: 596–607 Laurent S, Vander Elst L, Fu Y, Muller R (2004) Synthesis and physicochemical characterization of Gd-DTPA-B(sLex)A, a new MRI contrast agent targeted to inflammation. Bioconjug Chem 15: 99–103 Fukuda M, Ohyama C, Lowitz K, Matsuo O, Pasqualini R, Ruoslahti E, Fukuda M (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res 60: 450–456 Renkonen R, Fukada MN, Petrov L, Paavonen T, Renkonen J, Häyry P, Fukuda M (2002) A peptide mimic of selectin ligands abolishes in vivo inflammation but has no effect on the rat heart allograft survival. Transplantation 74: 2–6 Babes L, Denizot B, Tanguy G, Le Jeune J, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212: 474–482 Portet D, Denizot B, Rump E, Le Jeune J-J, Jallet P (2001) Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci 238: 37–42 Mowat P, Franconi F, Chapon C, Lemaire L, Dorat J, Hindre F, Benoit JP, Richomme P, Le Jeune JJ (2007) Evaluating SPIO-labelled cell MR efficiency by three-dimensional quantitative T2* MRI. NMR Biomed 20: 21–27 Ohshima H (2000) On the general expression for the electrophoretic mobility of a soft particle. J Colloid Interface Sci 228: 190–193 Vonarbourg A, Saulnier P, Passirani C, Benoit JP (2005) Electrokinetic properties of noncharged lipid nanocapsules: influence of the dipolar distribution at the interface. Electrophoresis 26: 2066–2075 Stejskal E, Tanner J (1965) Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys 42: 288–292 Van Putten H, Bouwhuis M, Muizelaar J, Lyeth B, Berman R (2005) Diffusion-weighted imaging of edema following traumatic brain injury in rats: effects of secondary hypoxia. J Neurotrauma 22: 857–872 Lythgoe M, Busza A, Calamante F, Sotak C, King M, Bingham A, Williams S, Gadian D (1997) Effects of diffusion anisotropy on lesion delineation in a rat model of cerebral ischemia. Magn Reson Med 38: 662–668 Franconi F, Mowat P, Lemaire L, Richomme P, Le Jeune JJ (2006) Single-scan quantitative T2* methods with susceptibility artifact reduction. NMR Biomed 19: 527–534 Springer TA (1990) Adhesion receptors of the immune system. Nature 346: 425–434 Lasky LA (1995) Selectin–carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64: 113–139 Martens CL, Cwirla SE, Lee RY, Whitehorn E, Chen EY, Bakker A, Martin EL, Wagstrom C, Gopalan P, Smith CW et al (1995) Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 270: 21129–21136 Ohyama C, Tsuboi S, Fukuda M (1999) Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. Embo J 18: 1516–1525 Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ (2003) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 71: 208–219 McAfee JG, Krauss DJ, Subramanian G, Thomas FD, Roskopf M, Ritter C, Lyons B, Schoonmaker JE, Finn RD (1983) Comparison of 99mTc phosphate and diphosphonate complexes in experimental renal infarcts. Invest Radiol 18: 479–484 Pasco A, Lemaire L, Franconi F, Lefur Y, Noury F, Saint-Andre JP, Benoit JP, Cozzone PJ, Le Jeune JJ (2007) Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging. J Neurotrauma 24: 1321–1330 Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A (2006) Bolus tracer delivery measured by MRI confirms edema without blood–brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl 96: 171–174 Dardzinski BJ, Schmithorst VJ, Holland SK, Boivin GP, Imagawa T, Watanabe S, Lewis JM, Hirsch R (2001) MR imaging of murine arthritis using ultrasmall superparamagnetic iron oxide particles. Magn Reson Imaging 19: 1209–1216 Gellissen J, Axmann C, Prescher A, Bohndorf K, Lodemann KP (1999) Extra- and intracellular accumulation of ultrasmall superparamagnetic iron oxides (USPIO) in experimentally induced abscesses of the peripheral soft tissues and their effects on magnetic resonance imaging. Magn Reson Imaging 17: 557–567 Beduneau A, Hindre F, Clavreul A, Leroux JC, Saulnier P, Benoit JP (2008) Brain targeting using novel lipid nanovectors. J Control Release 126: 44–49