1989, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689
1992, Phys. Rev. Lett., 68, 2512, 10.1103/PhysRevLett.68.2512
2000, Superlattices Microstruct., 28, 253, 10.1006/spmi.2000.0920
2002, Phys. Rev. B, 65, 165401, 10.1103/PhysRevB.65.165401
2003, Ann. N. Y. Acad. Sci., 1006, 212, 10.1196/annals.1292.014
10.1016/S1386-9477(02)01006-8
2006, Phys. Rev. B, 73, 085414, 10.1103/PhysRevB.73.085414
Röthig, 2006, CFN Lectures on Functional Nanostructures, 1st ed., 27
2007, J. Chem. Phys., 126, 174101, 10.1063/1.2716664
2012, J. Phys. Chem. C, 116, 24393, 10.1021/jp3044225
2012, J. Chem. Phys., 136, 150901, 10.1063/1.4704546
1981, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048
2005, Phys. Rev. Lett., 95, 146402, 10.1103/PhysRevLett.95.146402
1986, Phys. Rev. B, 34, 5390, 10.1103/PhysRevB.34.5390
2006, Phys. Rev. Lett., 97, 216405, 10.1103/PhysRevLett.97.216405
1998, Rep. Prog. Phys., 61, 237, 10.1088/0034-4885/61/3/002
2009, Phys. Rev. Lett., 102, 046802, 10.1103/PhysRevLett.102.046802
2004, Phys. Rev. B, 69, 195318, 10.1103/PhysRevB.69.195318
2005, Phys. Rev. B, 72, 035308, 10.1103/PhysRevB.72.035308
2010, Phys. Rev. Lett., 105, 156802, 10.1103/PhysRevLett.105.156802
2007, Nano Lett., 11, 3477, 10.1021/nl072058i
2008, J. Chem. Phys., 128, 111103, 10.1063/1.2894544
2005, Chem. Phys., 319, 350, 10.1016/j.chemphys.2005.05.035
2008, Nano Lett., 8, 3809, 10.1021/nl8021708
2013, Nat. Nanotechnol., 8, 282, 10.1038/nnano.2013.26
2000, J. Lumin., 87-89, 61, 10.1016/S0022-2313(99)00230-6
10.1016/S0379-6779(98)80075-1
1999, Adv. Mater., 11, 605, 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
2004, Appl. Surf. Sci., 107, 10.1016/j.apsusc.2004.05.084
2004, Europhys. Lett., 65, 802, 10.1209/epl/i2003-10131-2
2003, J. Phys.: Condens. Matter, 15, S2665, 10.1088/0953-8984/15/38/006
2008, Nat. Mater., 7, 326, 10.1038/nmat2119
2010, Phys. Rev. Lett., 104, 246805, 10.1103/PhysRevLett.104.246805
2011, Phys. Rev. B, 84, 165302, 10.1103/PhysRevB.84.165302
2008, J. Phys.: Condens. Matter, 20, 374115, 10.1088/0953-8984/20/37/374115
2003, Nature, 425, 698, 10.1038/nature02010
2012, Nat. Nanotechnol., 7, 35, 10.1038/nnano.2011.212
Vojta, 2011, CFN Lectures on Functional Nanostructures– Volume 2, 27, 10.1007/978-3-642-14376-2
1989, Phys. Rev. B, 40, 7565, 10.1103/PhysRevB.40.7565
1991, Phys. Rev. B, 44, 7888, 10.1103/PhysRevB.44.7888
1991, J. Phys.: Condens. Matter, 3, 6721, 10.1088/0953-8984/3/35/005
See supplementary material at http://dx.doi.org/10.1063/1.4934882 for computational details in Section I; explanation of where the gate field is applied in Section II; comparison of the results obtained using LDA and GGA in Section III; Figure S1 shows the ZnTPPdT orbitals in gas phase; Figure S2 shows the regions where we applied the gate field used to determine the weakest coupling in the junction; Figure S3 shows the levels shift obtained using LDA and GGA. Table I shows the Hirschfeld charge distribution for the BDA molecule.
2012, Phys. Rev. B, 85, 155117, 10.1103/PhysRevB.85.155117
2012, Phys. Rev. Lett., 108, 066801, 10.1103/PhysRevLett.108.066801
2015, Phys. Rev. B, 91, 245158, 10.1103/PhysRevB.91.245158
2011, Beilstein J. Nanotechnol., 2, 714, 10.3762/bjnano.2.77
2011, Angew. Chem., 123, 11419, 10.1002/ange.201104757
2008, J. Phys. Chem. C, 112, 16691, 10.1021/jp804258q
2004, J. Chem. Phys., 121, 6485, 10.1063/1.1783251
2006, J. Chem. Phys., 125, 174718, 10.1063/1.2363182
2006, Phys. Rev. B, 73, 235323, 10.1103/PhysRevB.73.235323
2011, ACS Nano, 5, 795, 10.1021/nn101628w
2003, Phys. Rev. B, 68, 115406, 10.1103/PhysRevB.68.115406
2003, Phys. Rev. B, 68, 115407, 10.1103/PhysRevB.68.115407
2005, Chem. Rev., 105, 1103, 10.1021/cr0300789
2006, Chem. Phys. Lett., 429, 503, 10.1016/j.cplett.2006.08.031
2006, Small, 2, 1468, 10.1002/smll.200600054