Image effects in transport at metal-molecule interfaces

Journal of Chemical Physics - Tập 143 Số 17 - 2015
C. J. O. Verzijl1, José Antonio Gil1, Mickael L. Perrin1, Diana Dulić2, Herre S. J. van der Zant1, J. M. Thijssen1
1Delft University of Technology 1 Kavli Institute of Nanoscience, , 2628 CJ Delft, The Netherlands
2Universidad de Chile 2 Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, , Santiago de Chile, Chile

Tóm tắt

We present a method for incorporating image-charge effects into the description of charge transport through molecular devices. A simple model allows us to calculate the adjustment of the transport levels, due to the polarization of the electrodes as charge is added to and removed from the molecule. For this, we use the charge distributions of the molecule between two metal electrodes in several charge states, rather than in gas phase, as obtained from a density-functional theory-based transport code. This enables us to efficiently model level shifts and gap renormalization caused by image-charge effects, which are essential for understanding molecular transport experiments. We apply the method to benzene di-amine molecules and compare our results with the standard approach based on gas phase charges. Finally, we give a detailed account of the application of our approach to porphyrin-derivative devices recently studied experimentally by Perrin et al. [Nat. Nanotechnol. 8, 282 (2013)], which demonstrates the importance of accounting for image-charge effects when modeling transport through molecular junctions.

Từ khóa


Tài liệu tham khảo

1989, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689

1992, Phys. Rev. Lett., 68, 2512, 10.1103/PhysRevLett.68.2512

2000, Superlattices Microstruct., 28, 253, 10.1006/spmi.2000.0920

2002, Phys. Rev. B, 65, 165401, 10.1103/PhysRevB.65.165401

2003, Ann. N. Y. Acad. Sci., 1006, 212, 10.1196/annals.1292.014

10.1016/S1386-9477(02)01006-8

2006, Phys. Rev. B, 73, 085414, 10.1103/PhysRevB.73.085414

Röthig, 2006, CFN Lectures on Functional Nanostructures, 1st ed., 27

2007, J. Chem. Phys., 126, 174101, 10.1063/1.2716664

2012, J. Phys. Chem. C, 116, 24393, 10.1021/jp3044225

2012, J. Chem. Phys., 136, 150901, 10.1063/1.4704546

1981, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048

2005, Phys. Rev. Lett., 95, 146402, 10.1103/PhysRevLett.95.146402

1986, Phys. Rev. B, 34, 5390, 10.1103/PhysRevB.34.5390

2006, Phys. Rev. Lett., 97, 216405, 10.1103/PhysRevLett.97.216405

1998, Rep. Prog. Phys., 61, 237, 10.1088/0034-4885/61/3/002

2009, Phys. Rev. Lett., 102, 046802, 10.1103/PhysRevLett.102.046802

2004, Phys. Rev. B, 69, 195318, 10.1103/PhysRevB.69.195318

2005, Phys. Rev. B, 72, 035308, 10.1103/PhysRevB.72.035308

2010, Phys. Rev. Lett., 105, 156802, 10.1103/PhysRevLett.105.156802

2007, Nano Lett., 11, 3477, 10.1021/nl072058i

2008, J. Chem. Phys., 128, 111103, 10.1063/1.2894544

2005, Chem. Phys., 319, 350, 10.1016/j.chemphys.2005.05.035

2008, Nano Lett., 8, 3809, 10.1021/nl8021708

2013, Nat. Nanotechnol., 8, 282, 10.1038/nnano.2013.26

2000, J. Lumin., 87-89, 61, 10.1016/S0022-2313(99)00230-6

10.1016/S0379-6779(98)80075-1

1999, Adv. Mater., 11, 605, 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q

2004, Appl. Surf. Sci., 107, 10.1016/j.apsusc.2004.05.084

2004, Europhys. Lett., 65, 802, 10.1209/epl/i2003-10131-2

2003, J. Phys.: Condens. Matter, 15, S2665, 10.1088/0953-8984/15/38/006

2008, Nat. Mater., 7, 326, 10.1038/nmat2119

2010, Phys. Rev. Lett., 104, 246805, 10.1103/PhysRevLett.104.246805

2011, Phys. Rev. B, 84, 165302, 10.1103/PhysRevB.84.165302

2008, J. Phys.: Condens. Matter, 20, 374115, 10.1088/0953-8984/20/37/374115

2003, Nature, 425, 698, 10.1038/nature02010

2012, Nat. Nanotechnol., 7, 35, 10.1038/nnano.2011.212

Vojta, 2011, CFN Lectures on Functional Nanostructures– Volume 2, 27, 10.1007/978-3-642-14376-2

1989, Phys. Rev. B, 40, 7565, 10.1103/PhysRevB.40.7565

1991, Phys. Rev. B, 44, 7888, 10.1103/PhysRevB.44.7888

1991, J. Phys.: Condens. Matter, 3, 6721, 10.1088/0953-8984/3/35/005

See supplementary material at http://dx.doi.org/10.1063/1.4934882 for computational details in Section I; explanation of where the gate field is applied in Section II; comparison of the results obtained using LDA and GGA in Section III; Figure S1 shows the ZnTPPdT orbitals in gas phase; Figure S2 shows the regions where we applied the gate field used to determine the weakest coupling in the junction; Figure S3 shows the levels shift obtained using LDA and GGA. Table I shows the Hirschfeld charge distribution for the BDA molecule.

2012, Phys. Rev. B, 85, 155117, 10.1103/PhysRevB.85.155117

2012, Phys. Rev. Lett., 108, 066801, 10.1103/PhysRevLett.108.066801

2015, Phys. Rev. B, 91, 245158, 10.1103/PhysRevB.91.245158

2011, Beilstein J. Nanotechnol., 2, 714, 10.3762/bjnano.2.77

2011, Angew. Chem., 123, 11419, 10.1002/ange.201104757

2008, J. Phys. Chem. C, 112, 16691, 10.1021/jp804258q

2004, J. Chem. Phys., 121, 6485, 10.1063/1.1783251

2006, J. Chem. Phys., 125, 174718, 10.1063/1.2363182

2006, Phys. Rev. B, 73, 235323, 10.1103/PhysRevB.73.235323

2011, ACS Nano, 5, 795, 10.1021/nn101628w

2003, Phys. Rev. B, 68, 115406, 10.1103/PhysRevB.68.115406

2003, Phys. Rev. B, 68, 115407, 10.1103/PhysRevB.68.115407

2005, Chem. Rev., 105, 1103, 10.1021/cr0300789

2006, Chem. Phys. Lett., 429, 503, 10.1016/j.cplett.2006.08.031

2006, Small, 2, 1468, 10.1002/smll.200600054