Image analysis of immediate full-arch prosthetic rehabilitations guided by a digital workflow: assessment of the discrepancy between planning and execution

Springer Science and Business Media LLC - Tập 5 - Trang 1-11 - 2019
Krzysztof Chmielewski1, Wojciech Ryncarz2, Orcan Yüksel3, Pedro Goncalves4, Kyung-won Baek4, Susy Cok4, Michel Dard4,5
1SmileClinic Advanced Implant Center – Klinika Stomatologii Estetycznej i Implantologii, Gdańsk, Poland
2Stomatologia estetyczna implantologia – Klinika Proimplant, Warszawa, Poland
3YÜKSEL | GIESENHAGEN Dentale Implantologie, Frankfurt, Germany
4Institut Straumann AG, Basel, Switzerland
5Oral, Diagnosis and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, USA

Tóm tắt

A dentition with adequate function and esthetics is essential for the well-being and quality of life. A full implant-retained fixed prosthetics is an ideal solution for fully edentulous arch, however requires complex planning, surgical, and prosthetic procedure. With the help of digital workflow, it becomes a predictable and fast solution for the dentists and the patients. This retrospective study analyzed the most advanced surgical approach in full-arch rehabilitation with dental implants and immediate loading using digital workflow. Patient records of fully edentulous jaws treated in four clinical centers in Warsaw, Poland, were evaluated. Computer-assisted planning and surgical template fabrication were done using the planning software coDiagnostiX™, based on a pre-op cone beam computed tomography (CBCT) and scanned data of a plaster model. A post-op CBCT was acquired after the placement of four to six implants by the guided system. The influence of different surgical variables on the discrepancy between planning and execution was analyzed, together with the biomechanical indices. A total of nine patient records were selected of 12 edentulous jaws treated with 62 implants. The overall mean three-dimensional (3D) offset at the implant base was 1.60 mm, at the tip 1.86 mm. The mean angle of deviation was 4.89°, the mean implant stability quotient (ISQ) 70.42, and the insertion torque 35.58 Ncm. The 3D offsets were influenced by the gender of the patient, treated jaw, the diameter, and length of the implant. The angle of deviation was affected only by the treated jaw. Insertion torque was influenced by the treated jaw, the age of the patient, the length of the implant, tooth type, and the side of the jaw. Bone quality of the patient and implant preparation procedure influenced the discrepancy between the planning and the execution of the digitally guided implant placement. Dense bone—mandible, posterior area, young age, and man—and multiple preparations of the implant bed—wider and longer implant—could be suggested as risk factors. Digital workflow successfully enabled the immediate full-arch rehabilitation with a predictable outcome by different surgeons in multiple centers.

Tài liệu tham khảo

Othman HI. Role of computer aided design and computer aided manufacturing technology in prosthetic restorations. Int J Dent Clin. 2012;4(4):22–34. Komiyama A, Hultin M, Nasstrom K, Benchimol D, Klinge B. Soft tissue conditions and marginal bone changes around immediately loaded implants inserted in edentate jaws following computer guided treatment planning and flapless surgery: a ≥1-year clinical follow-up study. Clin Implant Dent Relat Res. 2012;14(2):157–69. Stubinger S, Buitrago-Tellez C, Cantelmi G. Deviations between placed and planned implant positions: an accuracy pilot study of skeletally supported stereolithographic surgical templates. Clin Implant Dent Relat Res. 2014;16(4):540–51. Hultin M, Svensson KG, Trulsson M. Clinical advantages of computer-guided implant placement: a systematic review. Clin Oral Implants Res. 2012;23(Suppl 6):124–35. Murat S, Kamburoglu K, Ozen T. Accuracy of a newly developed cone-beam computerized tomography-aided surgical guidance system for dental implant placement: an ex vivo study. J Oral Implantol. 2012;38(6):706–12. Vercruyssen M, Hultin M, Van Assche N, Svensson K, Naert I, Quirynen M. Guided surgery: accuracy and efficacy. Periodontology 2000. 2014;66(1):228–46. Mischkowski RA, Zinser MJ, Neugebauer J, Kübler A, Zöller JE. Comparison of static and dynamic computer-assisted guidance methods in implantology. Int J Comput Dent. 2006;9(1):23–35. Douglass CW, Shih A, Ostry L. Will there be a need for complete dentures in the United States in 2020? J Prosthet Dent. 2002;87(1):5–8. Verhamme LM, Meijer GJ, Boumans T, de Haan AF, Berge SJ, Maal TJ. A clinically relevant accuracy study of computer-planned implant placement in the edentulous maxilla using mucosa-supported surgical templates. Clin Implant Dent Relat Res. 2015;17(2):343–52. Rutkunas V, Mizutani H, Puriene A. Conventional and early loading of two-implant supported mandibular overdentures. A systematic review. Stomatologija. 2008;10:51–61. Sadowsky SJ. Treatment considerations for maxillary implant overdentures: a systemic review. J Prosthet Dent. 2007;97:340–8. Kramer FJ, Baethge C, Swennen G, Rosahl S. Navigated vs. conventional implant insertion for maxillary single tooth replacement. Clin Oral Implants Res. 2005;16(1):60–8. Brief J, Edinger D, Hassfeld S, Eggers G. Accuracy of image-guided implantology. Clin Oral Implants Res. 2005;16(4):495–501. Toyoshima T, Tanaka H, Sasaki M, Ichimaru E, Naito Y, Matsushita Y, et al. Accuracy of implant surgery with surgical guide by inexperienced clinicians: an in vitro study. Clin Exp Dent Res. 2015;1(1):10–7. Zhao XZ, Xu WH, Tang ZH, Wu MJ, Zhu J, Chen S. Accuracy of computer-guided implant surgery by a CAD/CAM and laser scanning technique. Chin J Dent Res. 2014;17(1):31–6. Amorfini L, Migliorati M, Drago S, Silvestrini-Biavati A. Immediately loaded implants in rehabilitation of the maxilla: a two-year randomized clinical trial of guided surgery versus standard procedure. Clin Implant Dent Relat Res. 2017;19(2):280–95. Kühl S, Payer M, Zitzmann NU, Lambrecht JT, Filippi A. Technical accuracy of printed surgical templates for guided implant surgery with the coDiagnostiXTM software. Clin Implant Dent Relat Res. 2015;17(S1):e177–82. Neumeister A, Schulz L, Glodecki C. Investigations on the accuracy of 3D-printed drill guides for dental implantology. Int J Comput Dent. 2017;20(1):35–51. Geng W, Liu C, Su Y, Li J, Zhou Y. Accuracy of different types of computer-aided design/computer-aided manufacturing surgical guides for dental implant placement. Int J Clin Exp Med. 2015;8(6):8442–9. Gallardo R, Natali Y, Silva-Olivio IRT, Mukai E, Morimoto S, Sesma N, et al. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis. Clin Oral Implants Res. 2017;28(5):602–12. Schneider D, Marquardt P, Zwahlen M, Jung RE. A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin Oral Implants Res. 2009;20:73–86. Nickenig H-J, Eitner S. Reliability of implant placement after virtual planning of implant positions using cone beam CT data and surgical (guide) templates. J Cranio-Maxillofac Surg. 2007;35(4):207–11. Naziri E, Schramm A, Wilde F. Accuracy of computer-assisted implant placement with insertion templates. GMS Interdiscip Plast Reconstr Surg DGPW. 2016;5. https://doi.org/10.3205/iprs000094. Herekar M, Sethi M, Ahmad T, Fernandes AS, Patil V, Kulkarni H. A correlation between bone (B), insertion torque (IT), and implant stability (S): BITS score. J Prosthet Dent. 2014;112(4):805–10. Turkyilmaz I, Tözüm T, Tumer C, Ozbek E. Assessment of correlation between computerized tomography values of the bone, and maximum torque and resonance frequency values at dental implant placement. J Oral Rehabil. 2006;33(12):881–8. Turkyilmaz I, Sennerby L, McGlumphy EA, Tözüm TF. Biomechanical aspects of primary implant stability: a human cadaver study. Clin Implant Dent Relat Res. 2009;11(2):113–9. Alsaadi G, Quirynen M, Michiels K, Jacobs R, Van Steenberghe D. A biomechanical assessment of the relation between the oral implant stability at insertion and subjective bone quality assessment. J Clin Periodontol. 2007;34(4):359–66.