Idiopathic scoliosis: etiological concepts and hypotheses
Tóm tắt
Scoliosis is diagnosed as idiopathic in 70 % of structural deformities affecting the spine in children and adolescents, probably reflecting our current misunderstanding of this disease. By definition, a structural scoliosis should be the result of some primary disorder. The goal of this article is to give a comprehensive overview of the currently proposed etiological concepts in idiopathic scoliosis regarding genetics, molecular biology, biomechanics, and neurology, with particular emphasis on adolescent idiopathic scoliosis (AIS). Despite the fact that numerous potential etiologies for idiopathic scoliosis have been formulated, the primary etiology of AIS remains unknown. Beyond etiology, identification of prognostic factors of AIS progression would probably be more relevant in our daily practice, with the hope of reducing repetitive exposure to radiation, unnecessary brace treatments, psychological implications, and costs-of-care related to follow-up in low-risk patients.
Tài liệu tham khảo
Acaroglu E, Akel I et al (2009) Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34(18):E659–E663
Akoume MY, Azeddine B et al (2010) Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy. Spine (Phila Pa 1976) 35(13):E601–E608
Andersen MO, Thomsen K et al (2007) Adolescent idiopathic scoliosis in twins: a population-based survey. Spine (Phila Pa 1976) 32(8):927–930
Bredoux R, Corvazier E et al (2006) Human platelet Ca2+-ATPases: new markers of cell differentiation as illustrated in idiopathic scoliosis. Platelets 17(6):421–433
Burwell RG, Aujla RK et al (2009) Pathogenesis of adolescent idiopathic scoliosis in girls—a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. Scoliosis 4:24
Burwell RG, Dangerfield PH et al (2008) Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis. Stud Health Technol Inform 135:3–52
Burwell RG, Dangerfield PH et al (2011) Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. Scoliosis 6(1):26
Cheng JC, Tang SP et al (2001) Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine (Phila Pa 1976) 26(3):E19–E23
Chu WC, Lam WM et al (2008) Relative shortening and functional tethering of spinal cord in adolescent scoliosis—result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE. Scoliosis 3:8
Chu WC, Lam WW et al (2006) Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine (Phila Pa 1976) 31(1):E19–E25
Chu WC, Man GC et al (2007) A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 32(15):1667–1674
Chu WC, Man GC et al (2008) Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 33(6):673–680
Clough M, Justice CM et al (2010) Males with familial idiopathic scoliosis: a distinct phenotypic subgroup. Spine (Phila Pa 1976) 35(2):162–168
Cook SD, Harding AF et al (1987) Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 7(2):168–174
Dede O, Akel I et al (2011) Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model. Scoliosis 6(1):24
Drevelle X, Dubousset J et al (2008) Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation. Stud Health Technol Inform 140:85–89
Drevelle X, Lafon Y et al (2010) Analysis of idiopathic scoliosis progression by using numerical simulation. Spine (Phila Pa 1976) 35(10):E407–E412
Floman Y, Liebergall M et al (1983) Abnormalities of aggregation, thromboxane A2 synthesis, and 14C serotonin release in platelets of patients with idiopathic scoliosis. Spine (Phila Pa 1976) 8(3):236–241
Gauchard GC, Lascombes P et al (2001) Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine (Phila Pa 1976) 26(9):1052–1058
Hadley-Miller N, Mims B et al (1994) The potential role of the elastic fiber system in adolescent idiopathic scoliosis. J Bone Joint Surg Am 76(8):1193–1206
Haumont T, Gauchard GC et al (2011) Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine (Phila Pa 1976) 36(13):E847–E854
Healey JH, Lane JM (1985) Structural scoliosis in osteoporotic women. Clin Orthop Relat Res 195:216–223
Justice CM, Miller NH et al (2003) Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine (Phila Pa 1976) 28(6):589–594
Kahmann RD, Donohue JM et al (1992) Platelet function in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 17(2):145–148
Karol LA (2001) Effectiveness of bracing in male patients with idiopathic scoliosis. Spine (Phila Pa 1976) 26(18):2001–2005
Kindsfater K, Lowe T et al (1994) Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg Am 76(8):1186–1192
Kono H, Machida M et al (2011) Mechanism of osteoporosis in adolescent idiopathic scoliosis: experimental scoliosis in pinealectomized chickens. J Pineal Res 51(4):387–393
Lambert FM, Malinvaud D et al (2009) Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer fromXenopus. J Neurosci 29(40):12477–12483
Letellier K, Azeddine B et al (2007) Etiopathogenesis of adolescent idiopathic scoliosis and new molecular concepts. Med Sci (Paris) 23(11):910–916
Liu T, Chu WC et al (2008) MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease. J Magn Reson Imaging 27(4):732–736
Lowe T, Lawellin D et al (2002) Platelet calmodulin levels in adolescent idiopathic scoliosis: do the levels correlate with curve progression and severity? Spine (Phila Pa 1976) 27(7):768–775
Machida M, Dubousset J et al (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br 77(1):134–138
Machida M, Dubousset J et al (2009) Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression—a prospective study. J Pineal Res 46(3):344–348
Mallau S, Bollini G et al (2007) Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine (Phila Pa 1976) 32(1):E14–E22
Marosy B, Justice CM et al (2010) Identification of susceptibility loci for scoliosis in FIS families with triple curves. Am J Med Genet A 152A(4):846–855
Meyer C, Cammarata E et al (2006) Why do idiopathic scoliosis patients participate more in gymnastics? Scand J Med Sci Sports 16(4):231–236
Meyer C, Haumont T et al (2008) The practice of physical and sporting activity in teenagers with idiopathic scoliosis is related to the curve type. Scand J Med Sci Sports 18(6):751–755
Meyer S, More R et al (1987) Platelet pathology in minimal curve idiopathic scoliosis: an attempt to predict curve progression. J Orthop Res 5(3):330–336
Miller NH (2011) Idiopathic scoliosis: cracking the genetic code and what does it mean? J Pediatr Orthop 31(1 Suppl):S49–S52
Miller NH (2007) Genetics of familial idiopathic scoliosis. Clin Orthop Relat Res 462:6–10
Miller NH, Justice CM et al (2005) Identification of candidate regions for familial idiopathic scoliosis. Spine (Phila Pa 1976) 30(10):1181–1187
Moreau A, Akoume Ndong MY et al (2009) Molecular and genetic aspects of idiopathic scoliosis. Blood test for idiopathic scoliosis. Orthopade 38(2):114–116, 118–121
Moreau A, Wang DS et al (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(16):1772–1781
Muhlrad A, Yarom R (1982) Contractile protein studies on platelets from patients with idiopathic scoliosis. Haemostasis 11(3):154–160
Ogilvie JW (2011) Update on prognostic genetic testing in adolescent idiopathic scoliosis (AIS). J Pediatr Orthop 31(1 Suppl):S46–S48
Ogilvie JW, Braun J et al (2006) The search for idiopathic scoliosis genes. Spine (Phila Pa 1976) 31(6):679–681
Peleg I, Eldor A et al (1989) Altered structural and functional properties of myosins, from platelets of idiopathic scoliosis patients. J Orthop Res 7(2):260–265
Porter RW (2000) Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine (Phila Pa 1976) 25(11):1360–1366
Porter RW (2001) Can a short spinal cord produce scoliosis? Eur Spine J 10(1):2–9
Porter RW (2001) The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth? Eur Spine J 10(6):473–481
Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55(5):974–982
Roth M (1981) Idiopathic scoliosis and Scheuermann’s disease: essentially identical manifestations of neuro-vertebral growth disproportion. Radiol Diagn (Berl) 22(3):380–391
Rousie DL, Deroubaix JP et al (2009) Abnormal connection between lateral and posterior semicircular canal revealed by a new modeling process: origin and physiological consequences. Ann NY Acad Sci 1164:455–457
Sharma S, Gao X et al (2011) Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet 20(7):1456–1466
Shyy W, Wang K et al (2010) Evaluation of GPR50, hMel-1B, and ROR-alpha melatonin-related receptors and the etiology of adolescent idiopathic scoliosis. J Pediatr Orthop 30(6):539–543
Staub H (1922) Eine skoliotikerfamilie. Ein Betrag zur Frage der kongenitalen Skoliose und der Hereditat der Skoliosen. Z Orthop Chir 43:1–20
Suk SI, Kim IK et al (1991) A study on platelet function in idiopathic scoliosis. Orthopedics 14(10):1079–1083
Szalay EA, Bosch P et al (2008) Adolescents with idiopathic scoliosis are not osteoporotic. Spine (Phila Pa 1976) 33(7):802–806
Thevenon A, Pollez B et al (1987) Relationship between kyphosis, scoliosis, and osteoporosis in the elderly population. Spine (Phila Pa 1976) 12(8):744–745
Vermot J, Pourquie O (2005) Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature 435(7039):215–220
Vilhais-Neto GC, Maruhashi M et al (2010) Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463(7283):953–957
Wang W, Zhu Z et al (2012) Different curve pattern and other radiographic characteristics in male and female patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 37(18):1586–1592
Ward K, Ogilvie JW et al (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35(25):E1455–E1464
Wiener-Vacher SR, Mazda K (1998) Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr 132(6):1028–1032
Wise CA, Gao X et al (2008) Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood. Curr Genomics 9(1):51–59
Wynne-Davies R (1975) Infantile idiopathic scoliosis. Causative factors, particularly in the first six months of life. J Bone Joint Surg Br 57(2):138–141
Yarom R, Muhlrad A et al (1980) Platelet pathology in patients with idiopathic scoliosis: ultrastructural morphometry, aggregations, X-ray spectrometry, and biochemical analysis. Lab Invest 43(3):208–216