Identity2Vec: learning mesoscopic structural identity representations via Poisson probability metric
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wen, Y., Guo, L., Chen, Z., Ma, J.: Network embedding based recommendation method in social networks. In: Companion Proceedings of The Web Conference WWW’18, pp. 11–12 (2018). https://doi.org/10.1145/3184558.3186904
Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2017)
Leonardo, R., Pedro, S., Daniel, F.: struc2vec: Learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’17, pp. 385–394 (2017). ACM. https://doi.org/10.1145/3097983.3098061
Francois, L., Harrison, W.: Structural equivalence of individuals in social networks. J. Math. Sociol. 1, 49 (1971)
Narciso, P.: Structural identity and equivalence of individuals in social networks beyond duality. J. Int. Sociol. 22, 767 (2007)
van der Hofstad, R., van Leeuwaarden, J., Stegehuis, C.: Hierarchical configuration model. arXiv:1512.08397 (2015)
Jian, T., Meng, Q., Mingzhe, W., Ming, Z., Jun, Y., Qiaozhu, M.: Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)
Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016). ACM
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014). ACM
Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning for networks. In: AAAI (2018)
Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. Computing Research Repository (CoRR) arXiv:1301.3781 (2013)
Adhikari, B., Zhang, Y., Ramakrishnan, N., Prakash, B.A.: Sub2vec: feature learning for subgraphs. In: PAKDD (2018)
van der Hofstad, R.W., van Leeuwaarden, J.S.H., Stegehuis, C.: Mesoscopic scales in hierarchical configuration models. ArXiv arXiv:1612.02668 (2016)
Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. Networks 11(9), 12–18 (2016)
Dong, Y., Chawla, N., Swami, A.: metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)
Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip!: online learning of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ASONAM ’17, pp. 258–265 (2017). ACM. https://doi.org/10.1145/3110025.3110086
Hanyin, F., Fei, W., Zhou, Z., Xinyu, D., Yueting, Z., Martin, E.: Community-based question answering via heterogeneous social network learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence AAAI’16, pp. 122–128 (2016). ACM
Li, C., Ma, J., Guo, X., Mei, Q.: Deepcas: an end-to-end predictor of information cascades. In: Proceedings of the 26th International Conference on World Wide Web (2017)
Sandro, C., Vincent, Z., Hongyun, C., Kevin, C., Erik, C.: Learning community embedding with community detection and node embedding on graphs. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management CIKM ’17, pp. 377–386 (2017). ACM. https://doi.org/10.1145/3132847.3132925
Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: subgraph2vec: learning distributed representations of rooted sub-graphs from large graphs. ArXiv arXiv:1606.08928 (2016)
Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). https://networkrepository.com
Palmisano, A.: Poisson and binomial distribution. In: Lopez, V. (ed.) The Encyclopedia of Archaeological Sciences, pp. 1–4 (2018)
Belov, D., Armstrong, R.: Distributions of the kullback-leibler divergence with applications. Br. J. Math. Stat. Psychol. 64(2), 291–309 (2011)
Feng, R., Yang, Y., Hu, W., Wu, F., Zhuang, Y.: Representation learning for scale-free networks. ArXiv arXiv:1711.10755 (2018)
Li, J., Zhu, J., Zhang, B.: Discriminative deep random walk for network classification. In: ACL (2016)