Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Danh tính Quan trọng: Nhiều Động Vật Gặm Nhấm Gây Ra Phát Thải Hợp Chất Đưa Ra Khỏi Cà Phê Ít Hấp Dẫn hoặc Có Khả Năng Xua Đuổi Các Kẻ Thù Tự Nhiên Khác Nhau
Journal of Chemical Ecology - Trang 1-14 - 2023
Tóm tắt
Sự đồng nhiễm của các động vật gặm nhấm, một tình huống phổ biến trong các môi trường tự nhiên, có thể ảnh hưởng rõ rệt đến sự phòng vệ của thực vật so với tình trạng nhiễm đơn. Các tương tác tritrophic liên quan có thể bị ảnh hưởng thông qua việc phát thải các hỗn hợp biến đổi của các hợp chất bay hơi do động vật gặm nhấm (HIPVs) inducible. Trong một nghiên cứu trước đây, chúng tôi đã quan sát thấy rằng sự nhiễm của nhện đỏ (Oligonychus ilicis) trên cây cà phê đã tạo thuận lợi cho sự nhiễm của sâu bướm trắng (Planococcus minor), trong khi thứ tự nhiễm ngược lại không xảy ra. Ở đây, chúng tôi xem xét sự tham gia của các con đường jasmonate và salicylate trong sự hỗ trợ không đối xứng do cây trồng tạo ra giữa nhện đỏ và sâu bướm trắng, cũng như ảnh hưởng của việc ăn uống nhiều loại lên sự hấp dẫn đối với nhện săn mồi Euseius concordis và bọ rùa Cryptolaemus montrouzieri. Cả hai loại động vật gặm nhấm và sâu bướm đều dẫn đến sự tích lũy của JA-Ile, JA và cis-OPDA trong cây, mặc dù các phản ứng chuyển hóa của JA-Ile được quy định cụ thể bởi từng loại động vật gặm nhấm. Sự nhiễm bởi nhện hoặc sâu bướm đã kích hoạt việc giải phóng các hợp chất bay hơi mới từ cây cà phê, các hợp chất tự chọn của chúng đã thu hút những kẻ săn mồi tương ứng. Mặc dù sự đồng nhiễm giữa nhện và sâu bướm dẫn đến sự tích lũy mạnh mẽ hơn của JA-Ile, JA và SA hơn so với các điều trị nhiễm đơn, sự phát thải hợp chất bay hơi lại giống như cây bị nhiễm nhện hoặc cây bị nhiễm sâu bướm. Tuy nhiên, sự nhiễm nhiều loại có tác động tiêu cực đến sự hấp dẫn của HIPVs đối với các kẻ săn mồi, khiến chúng ít hấp dẫn hơn đối với nhện săn mồi và trở thành chất xua đuổi đối với bọ rùa. Chúng tôi thảo luận về các cơ chế tiềm năng gây nên sự dễ tổn thương do nhện, và ảnh hưởng của sự nhiễm nhiều loại đối với từng kẻ săn mồi.
Từ khóa
#động vật gặm nhấm #hỗ trợ không đối xứng #hợp chất bay hơi #nhện đỏ #sâu bướm trắng #cây cà phê #kẻ săn mồiTài liệu tham khảo
Alba JM, Schimmel BC, Glas JJ, Ataide LM, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR (2015) Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytol 205:828–840. https://doi.org/10.1111/nph.13075
Arena GD, Ramos-González PL, Rogerio LA, Ribeiro-Alves M, Casteel CL, Freitas-Astúa J, Machado MA (2018) Making a better home: modulation of plant defensive response by Brevipalpus mites. Front Plant Sci 9:1147. https://doi.org/10.3389/fpls.2018.01147
Ayelo PM, Yusuf AA, Chailleux A, Mohamed SA, Pirk CW, Deletre E (2022) Chemical cues from honeydew and cuticular extracts of Trialeurodes vaporariorum serve as kairomones for the parasitoid Encarsia formosa. J Chem Ecol 48:370–383. https://doi.org/10.1007/s10886-022-01354-6
Bobadilla MF, Bourne ME, Bloem J, Kalisvaart SN, Gort G, Dicke M, Poelman EH (2021) Insect species richness affects plant responses to multi-herbivore attack. New Phytol 231:2333. https://doi.org/10.1111/nph.17228
Bobadilla MF, Vitiello A, Erb M, Poelman EH (2022) Plant defense strategies against attack by multiple herbivores. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2021.12.010
Brillada C, Nishihara M, Shimoda T, Garms S, Boland W, Maffei ME, Arimura GI (2013) Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E, E)-geranyllinalool synthase attracts generalist and specialist predators in different manners. New Phytol 200:1200–1211. https://doi.org/10.1111/nph.12442
Bukovinszky T, Poelman EH, Kamp A, Hemerik L, Prekatsakis G, Dicke M (2012) Plants under multiple herbivory: consequences for parasitoid search behaviour and foraging efficiency. Anim Behav 83:501–509. https://doi.org/10.1016/j.anbehav.2011.11.027
Bush DS, Lawrance A, Siegel JP, Berenbaum MR (2017) Orientation of navel orangeworm (Lepidoptera: Pyralidae) larvae and adults toward volatiles associated with almond hull split and aspergillus flavus. Environ Entomol 46:602–608. https://doi.org/10.1093/ee/nvx068
Chabaane Y, Laplanche D, Turlings TC, Desurmont GA (2015) Impact of exotic insect herbivores on native tritrophic interactions: a case study of the african cotton leafworm, Spodoptera littoralis and insects associated with the field mustard Brassica rapa. J Ecol 103:109–117. https://doi.org/10.1111/1365-2745.12304
Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge
Chen X, Wang DD, Fang X, Chen XY, Mao YB (2019) Plant specialized metabolism regulated by jasmonate signaling. Plant Cell Physiol 60:2638–2647. https://doi.org/10.1093/pcp/pcz161
de Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230. https://doi.org/10.1023/B:JOEC.0000048784.79031.5e
de Boer JG, Hordijk CA, Posthumus MA, Dicke M (2008) Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J Chem Ecol 34:281–290. https://doi.org/10.1007/s10886-007-9405-z
Desurmont GA, Harvey J, van Dam NM, Cristescu SM, Schiestl FP, Cozzolino S, Anderson P, Larsson MC, Kindlmann P, Danner H, Turlings TC (2014) Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant Cell Environ 37:1854–1865. https://doi.org/10.1111/pce.12333
Dicke M, Hilker M (2003) Induced plant defences: from molecular biology to evolutionary ecology. Basic Appl Ecol 4:3–14. https://doi.org/10.1078/1439-1791-00129
Dicke M, Van Loon JJ, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attacks. Nat Chem Biol 5:317–324. https://doi.org/10.1038/nchembio.169
Dicke M, Vanbeek TA, Posthumus MA, Bendom N, Vanbokhoven H, Degroot AE (1990) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions—involvement of host plant in its production. J Chem Ecol 16:381–396. https://doi.org/10.1007/BF01021772
Dong Y, Hsiu B (2018) Evaluating the effectiveness of methyl salicylate on attracting predators. J Taiwan Agric Res 67:283–291
Erwin AC, Züst T, Ali JG, Agrawal AA (2014) Above-ground herbivory by red milkweed beetles facilitates above‐and below‐ground conspecific insects and reduces fruit production in common milkweed. J Ecol 102:1038–1047. https://doi.org/10.1111/1365-2745.12248
Glas JJ, Alba JM, Simoni S, Villarroel CA, Stoops M, Schimmel BC, Schuurink RC, Sabelis MW, Kant MR (2014) Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biol 12:98. https://doi.org/10.1186/s12915-014-0098-9
Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797–806
Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306. https://doi.org/10.1074/jbc.M111.316364
Heyer M, Reichelt M, Mithöfer A (2018) A holistic approach to analyze systemic jasmonate accumulation in individual leaves of Arabidopsis rosettes upon wounding. Front Plant Sci 9:1569. https://doi.org/10.3389/fpls.2018.01569
Hu X, Su S, Liu Q, Jiao Y, Peng Y, Li Y, Turlings TC (2020) Caterpillar-induced rice volatiles provide enemy-free space for the offspring of the brown planthopper. Elife 9:e55421. https://doi.org/10.7554/eLife.55421
Jeffries MJ, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM (2015) Mechanisms and ecological consequences of plant defense induction and suppression in herbivore communities. Ann Bot 115:1015–1051. https://doi.org/10.1093/aob/mcv054
Kawazu K, Mochizuki A, Sato Y, Sugeno W, Murata M, Seo S, Mitsuhara I (2012) Different expression profiles of jasmonic acid and salicylic acid inducible genes in the tomato plant against herbivores with various feeding modes. Arthropod-Plant Interact 6:221–230. https://doi.org/10.1007/s11829-011-9174-z
Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668. https://doi.org/10.1126/science.1096931
Kiełkiewicz M, Barczak-Brzyżek A, Karpińska B, Filipecki M (2019) Unravelling the complexity of plant defense induced by a simultaneous and sequential mite and aphid infestation. Int J Mol Sci 20:806. https://doi.org/10.3390/ijms20040806
Li W, Zhang Y, Xie Y, Niu X (2016) Selection response of Harmonia axyridis (Pallas) to body volatile of Ceroplastes japonicus Green. J Environ Entomol 38:329–336
Liao Y, Yu Z, Liu X, Zeng L, Cheng S, Li J, Tang J, Yang Z (2019) Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves. J Agric Food Chem 67:6716–6724. https://doi.org/10.1021/acs.jafc.9b01854
Mauck KE, De Moraes CM, Mescher MC (2011) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci 107:3600–3605. https://doi.org/10.1073/pnas.0907191107
McCormick AC (2016) Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 6:8569–8582. https://doi.org/10.1002/ece3.2567
McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310. https://doi.org/10.1016/j.tplants.2012.03.012
Menzel TR, Huang TY, Weldegergis BT, Gols R, van Loon JJ, Dicke M (2014) Effect of sequential induction by Mamestra brassicae L. and Tetranychus urticae Koch on lima bean plant indirect defense. J Chem Ecol 40:977–985. https://doi.org/10.1007/s10886-014-0499-9
Mertens D, Fernández de Bobadilla M, Rusman Q, Bloem J, Douma JC, Poelman EH (2021) Plant defence to sequential attack is adapted to prevalent herbivores. Nat Plants 7:1347–1353. https://doi.org/10.1038/s41477-021-00999-7
Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127. https://doi.org/10.1111/j.1469-8137.2007.02252.x
Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. https://doi.org/10.1146/annurev-arplant-042110-103854
Moreira X, Abdala-Roberts L, Castagneyrol B (2018) Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J Ecol 106:2353–2364. https://doi.org/10.1111/1365-2745.12987
Mostafiz MM, Hassan E, Shim JK, Lee KY (2019) Insecticidal efficacy of three benzoate derivatives against Aphis gossypii and its predator Chrysoperla carnea. Ecotoxicol Environ Saf 184:109653. https://doi.org/10.1016/j.ecoenv.2019.109653
Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88:628–667. https://doi.org/10.1139/Z10-032
Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262. https://doi.org/10.1104/pp.105.072348
Pareja M, Pinto-Zevallos DM (2016) Impacts of induction of plant volatiles by individual and multiple stresses across trophic levels. In: Blande JD, Glinwood R (eds) Deciphering chemical language of plant communication. Springer, Berlin, pp 61–93
Peñaflor MFGV, Andrade FM, Sales L, Silveira EC, Santa-Cecília LVC (2019) Interactions between white mealybugs and red spider mites sequentially colonizing coffee plants. J Appl Entomol 143:957–963. https://doi.org/10.1111/jen.12683
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. https://doi.org/10.1038/nchembio.164
Ponzio C, Gols R (2017) Dual herbivore attack and herbivore density affect metabolic profiles of Brassica nigra leaves. Plant Cell Environ 40:1356–1367. https://doi.org/10.1111/pce.12926
Ponzio C, Gols R, Pieterse CM, Dicke M (2013) Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Funct Ecol 27:587–598. https://doi.org/10.1111/1365-2435.12035
Reis PR, Alves EB (1997) Biologia do ácaro predador Euseius alatus DeLeon (Acari: Phytoseiidae). Anais Soc Entomol Bras 26:359–363
Reis PR, Alves EB, Sousa EO (1997) Biologia do ácaro vermelho do cafeeiro, Oligonychus ilicis (McGregor, 1917). Ciênc Agrotecnol 21:260–266
Sanches NF, Carvalho RS (2010) Procedimentos para manejo da criação e multiplicação do predador exótico Cryptolaemus montrouzieri. Embrapa Mandioca e Fruticultura. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/29720/1/circular-99ID27552.pdf. Accessed 10 Feb 2023
Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, Lima ER, Kant M, Sabelis MW, Janssen A (2011) A herbivore that manipulates plant defense. Ecol Lett 14:229–236. https://doi.org/10.1111/j.1461-0248.2010.01575.x
Schimmel BCJ, Ataide LMS, Kant MR (2017) Spatiotemporal heterogeneity of tomato induced defense responses affects spider mite performance and behavior. Plant Signal Behav 12:1688–1701. https://doi.org/10.1080/15592324.2017.1370526
Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Annu Rev Entomol 61:373–394. https://doi.org/10.1146/annurev-ento-010715-023851
Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Pop Ecol 43:23–29. https://doi.org/10.1007/pl00012011
Silva DB, Bueno VH, Van Loon JJ, Peñaflor MFG, Bento JMS, Van Lenteren JC (2018) Attraction of three mirid predators to tomato infested by both the tomato leaf mining moth tuta absoluta and the whitefly Bemisia tabaci. J Chem Ecol 44:29–39. https://doi.org/10.1007/s10886-017-0909-x
Silva DB, Weldegergis BT, Van Loon JJ, Bueno VH (2017) Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J Chem Ecol 43:53–65. https://doi.org/10.1007/s10886-016-0807-7
Tang J, Yang D, Wu J, Chen S, Wang L (2020) Silencing JA hydroxylases in Nicotiana attenuata enhances jasmonic acid-isoleucine-mediated defenses against Spodoptera litura. Plant Divers 42:111–119. https://doi.org/10.1016/j.pld.2019.11.005
Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159:1159–1175. https://doi.org/10.1104/pp.112.198150
Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:1–10. https://doi.org/10.1186/s12870-016-0771-y
Villarroel CA, Jonckheere W, Alba JM, Glas JJ, Dermauw W, Haring MA, Van Leeuwen T, Schuurink RC, Kant MR (2016) Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. Plant J 86(2):119–131. https://doi.org/10.1111/tpj.13152
Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V (2014) Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signal Behav 9:e29517. https://doi.org/10.4161/psb.29517
Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77. https://doi.org/10.1021/cb900269u
Xu HX, Qian LX, Wang XW, Shao RX, Hong Y, Liu SS, Wang XW (2019) A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci 116:490–495. https://doi.org/10.1073/pnas.1714990116
Zhang PJ et al (2013a) Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol 197:1291–1299. https://doi.org/10.1111/nph.12106
Zhang PJ, Li WD, Huang F, Zhang JM, Xu FC, Lu YB (2013b) Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. J Chem Ecol 39:612–619. https://doi.org/10.1007/s10886-013-0283-2
Zhang PJ et al (2015) The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk. Sci Rep 5:9354. https://doi.org/10.1038/srep09354
Zhang PJ, Zheng SJ, Van Loon JJA, Boland W, David A, Mumm R, Dicke M (2009) Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc Natl Acad Sci USA 106:21202–21207. https://doi.org/10.1073/pnas.0907890106
Zhang P, Zhu X, Huang F, Liu Y, Zhang J, Lu Y, Ruan Y (2011) Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis. PLoS ONE 6:e22378. https://doi.org/10.1371/journal.pone.0022378
Zhao J, Liu Y, Xu S, Wang J, Zhang Z, Wang MQ, Turlings TCJ, Zhang P, Zhou A (2023) Mealybug salivary microbes inhibit induced plant defenses. Pest Manag Sci. https://doi.org/10.1002/ps.7600
Zhao J, Wang Z et al (2020) Development of lady beetle attractants from floral volatiles and other semiochemicals for the biological control of aphids. J Asia-Pac Entomol 23:1023–1029. https://doi.org/10.1016/j.aspen.2020.08.005
Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M et al (2014) Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. Plant Physiol 164:384–399. https://doi.org/10.1104/pp.113.231555