Xác định các chất hoạt động và cơ chế của gừng trong điều trị ung thư đại tràng dựa trên dược lý mạng và mô phỏng docking phân tử

BioData Mining - Tập 14 Số 1 - 2021
Mengmeng Zhang1, Dan Wang1, Liang Feng1, Rong Zhao1, Xun Ye1, Lin He1, Li Ai2, Chunjie Wu1
1School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
2School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China

Tóm tắt

Tóm tắt Đặt vấn đề và mục tiêu

Ung thư đại tràng đang gia tăng với tỷ lệ cao và gừng (Zingiber officinale), như một loại thuốc thảo dược thông dụng, được gợi ý là một tác nhân tiềm năng cho ung thư đại tràng. Nghiên cứu này nhằm xác định các thành phần sinh học hoạt tính và các cơ chế tiềm năng của gừng trong việc phòng ngừa ung thư đại tràng bằng phương pháp tiếp cận dược lý mạng tích hợp.

Phương pháp

Các thành phần khả thi của gừng và các mục tiêu liên quan đã được phát hiện từ cơ sở dữ liệu TCMSP và Swiss target prediction. Sau đó, các mục tiêu tương tác với ung thư đại tràng được thu thập từ các cơ sở dữ liệu Genecards, OMIM và Drugbank. Phân tích con đường KEGG và phân tích làm giàu GO đã được thực hiện để khám phá các con đường tín hiệu liên quan đến gừng trong các liệu pháp điều trị ung thư đại tràng. Mạng lưới PPI và mạng lưới hợp chất-mục tiêu-bệnh được xây dựng bằng Cytoscape 3.8.1. Cuối cùng, phần mềm Discovery studio được sử dụng để xác nhận các gen chính và các thành phần hoạt tính từ gừng.

Kết quả

Sáu hợp chất hoạt động tiềm năng, 285 mục tiêu tương tác cùng với 1356 mục tiêu liên quan đến bệnh đã được thu thập, trong đó thu được 118 mục tiêu giao nhau. Tổng cộng có 34 mục tiêu chính bao gồm PIK3CA, SRC và TP53 đã được xác định thông qua phân tích mạng PPI. Các mục tiêu này chủ yếu tập trung vào các quá trình sinh học liên quan đến tín hiệu phosphatidylinositol 3-kinase, phản ứng tế bào với stress oxy hóa và phản ứng tế bào với kích thích hormone peptide. Sự làm giàu KEGG cho thấy rằng ba con đường tín hiệu có liên quan chặt chẽ đến việc phòng ngừa ung thư đại tràng bằng gừng, bao gồm các con đường ung thư, kháng hormone nội tiết và viêm gan B. TP53, HSP90AA1 và JAK2 được coi là các gen quan trọng nhất, được xác thực thông qua mô phỏng docking phân tử.

Kết luận

Nghiên cứu này chứng minh rằng gừng có tác dụng phòng ngừa ung thư đại tràng bằng cách điều chỉnh nhiều mục tiêu và nhiều con đường với nhiều thành phần khác nhau. Dữ liệu kết hợp này cung cấp cái nhìn mới cho các hợp chất từ gừng phát triển thành thuốc mới cho việc chống ung thư đại tràng.

Từ khóa


Tài liệu tham khảo

Jemal A, Bray F, Center MM, et al. Global cancer 536 statistics. CA Cancer J Clin. 2011;61:69–90.

Nasir A, Bullo MMH, Ahmed Z, et al. Nutrigenomics: epigenetics and cancer prevention: a comprehensive review. Crit Rev Food Nutr. 2020;60(8):1375–87.

Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007;9:767–76.

Govindarajan VS. Ginger: chemistry, technology, and quality evaluation: part 1. Crit Rev Food Sci. 1982;17:1–96.

Guo T, Tan SB, Wang Y, et al. Two new monoterpenoid glycosides from the fresh rhizome of Tongling white ginger (Zingiber officinale). Nat Prod Res. 2018;32:71–6.

Kubra IR, Mohan LJ. An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale roscoe). Crit Rev Food Technol. 2012;52:651–88.

Liao DW, Cheng C, Liu JP, et al. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods. Int J Biol Macromol. 2020;152:894–903.

Zhang MZ, Xiao B, Wang H, et al. Edible ginger-derived Nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24:1783–96.

Song XQ, Zhang Y, Dai EQ, et al. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking. Int Immunopharmacol. 2020;80:106179.

Kim SK, Lee S, Lee MK, et al. A systems pharmacology approach to investigate the mechanism of Oryeong-sanformula for the treatment of hypertension. J Ethnopharmacol. 2019;244:112–29.

Liu SY, Wu JR, Zhu YL, et al. Network pharmacology-based approach to investigate the mechanisms of Shenqi Fuzheng injection in the treatment of breast cancer. Eur J Integr Med. 2020;34:101064.

Ru JL, Li P, Wang JN, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf. 2014;6:13.

Qian C, Zhang YL, Ma YH, et al. A network pharmacology approach to investigate the mechanism of Shuxuening injection in the treatment of ischemic stroke. J Ethnopharmacol. 2020;257:112891.

Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPredicition: a web server for target predicition of bioactive small molecules. Nucleic Acids Res. 2014;42:W32–8 Web Server issue.

Stelzer G, Dalah I, Stein TI, et al. In-silico human genomics with GeneCards. Hum Genom. 2011;5(6):709–17.

Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.org: online mendelian inheritance in man, an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43:D789–98.

Szklarczyk D, Franceschini A, Kuhn M, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks (M)//data mining in proteomics. Methods Mol Biol. 2011;96:291–303.

Kumara M, Shylajab MR, Nazeemc PA, et al. 6-Gingerol is the most potent anticancerous compound in ginger (Zingiber officinale Rosc.). J Develop Drugs. 2017;6:1–10.

Jeong CH, Bode AM, Pugliese A, et al. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res. 2009;69(13):5584–91.

Lin CB, Lin CC, Gregory JT. 6-Gingerol inhibits growth of colon cancer cell LoVo via induction of G2/M arrest. Evid Based Complement Alternat Med. 2012;2012:326096.

Choi YH, Kong KR, Kim YA, et al. Induction of Bax and activation of Caspases during beta-sitosterol-mediated apoptosis in human colon cancer cells. Int J Oncol. 2003;23(6):1657–62.

Wang LY, Bo XT, Yi XY, et al. Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis. 2020;11(9):723.

Li XF, Tian RF, Liu L, et al. Andrographolide enhanced radiosensitivity by downregulating glycolysis via the inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 colorectal cancer cells. J Int Med Res. 2020;48(8):1–17.

Chen Y, Wu J, Yan HF, et al. Lymecycline reverses acquired EGFR-TKI resistance in non-small-cell lung cancer by targeting GRB2. Pharmacol Res. 2020;159:105007.

Shanmugapriya K, Kim H, Kang HW. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int J Biol Macromol. 2020;158:1163–74.

Chen C, Liu WR, Zhang B, et al. LncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers. Cancer Lett. 2020;486:58–70.

Sruthi S, Nageswaran S. Curcumin induced apoptosis is mediated through oxidative stress in mutated p53 and wild type p53 colon adenocarcinoma cell lines. J Biochem Mol Toxicol. 2020;34:e22616.

Ozbolat SN, Ayna A. Chrysin suppresses HT-29 cell death induced by diclofenac through apoptosis and oxidative damage. Nutr Cancer J. 2020;1801775.

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–83.

Rhee SG. Cell signaling. H2O2 a necessary evil for cell signaling. Science. 2006;312:1882–3.

Weinberg F, Ramnath N, Nagrath D. Reactive oxygen species in the tumor microenvironment: an overview. Cancers. 2019;11:1191.