Identification of sex-specific SNPS in burbot Lota lota using RAD sequencing: conservation and management applications

Ninh V. Vu1,2, Daniel L. Eardley1, Thomas A. Delomas1, Matthew R. Campbell3
1Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, USA
2Present Address: Alkahest, Inc., San Carlos, USA
3Idaho Department of Fish and Game, Eagle, USA

Tóm tắt

The development of sex-specific genetic assays in a species provides both a method for identifying the system of sex determination and a valuable tool to address questions of conservation and management importance. In this study, we focused on the identification of single nucleotide polymorphisms (SNPs) that differentiate genetic sex in burbot Lota lota. Burbot are the only true freshwater representative of the cod family and a species of conservation and management importance throughout Eurasia and North America. To identify sex-specific SNPs, we utilized restriction site-associated DNA sequencing (RADseq) to interrogate thousands of SNPs in burbot samples of known phenotypic sex. We discovered 170,569 biallelic SNPs, none of which fit the pattern expected under female heterogamety. However, we identified 22 SNPs that fit the pattern expected under male heterogamety (males heterozygous XY, females fixed XX) and, from these, developed two genetic assays that robustly (~ 97% genotyping success) and accurately (> 99% correct) sexed burbot samples. These sex-specific genetic assays will benefit growing conservation aquaculture programs for this species and allow future assessments of sex-specific migration, growth, and mortality.

Từ khóa


Tài liệu tham khảo

Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, et al. RAD capture (rapture): flexible and efficient sequence-based genotyping. Genetics. 2016;202:389–400. Cahn AR. Observations on the breeding of the lawyer, Lota maculosa. Copeia. 1936;1936:163–5. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40. Chourrout D, Quillet E. Induced gynogenesis in the rainbow trout: sex and survival of progenies production of all-triploid populations. Theor Appl Genet. 1982;63:201–5. Cnaani A, Lee B-Y, Zilberman N, Ozouf-Costaz C, Hulata G, Ron M, et al. Genetics of sex determination in tilapiine species. Sex Dev. 2008;2:43–54. Dabrowski K, Rinchard J, Lin F, Garcia-Abiado M-A, Schmidt D. Induction of gynogenesis in muskellunge with irradiated sperm of yellow perch proves diploid muskellunge male homogamety. J Exp Zool. 2000;287:96–105. Delomas TA, Dabrowski K. Effects of homozygosity on sex determination in zebrafish Danio rerio. J Fish Biol. 2018;93:1178–87. EPA (United States Environmental Protection Agency). 2016. Idaho tribal fish consumption survey. Heritage fish consumption rates of the Kootenai tribe of Idaho. Prepared for the U.S. Environmental Protection Agency through SRA International, Inc. Contract EP- W-14-020. https://www.epa.gov/sites/production/files/2017-01/documents/heritage-fish-consumption-rates-kootenai-dec2016.pdf. Accessed 20 May 2019. Glennon RP, Gomelsky B, Schneider KJ, Kelly AM, Haukenes A. Evidence of female heterogamety in largemouth bass, based on sex ratio of gynogenetic progeny. N Am J Aquac. 2012;74:537–40. Jensen NJ, Williams SR, Ireland SC, Siple JT, Neufeld MD, Cain KD. Preliminary captive burbot spawning observations. In: Paragamian VL, Bennett DH, editors. Burbot: ecology, management, and culture, vol. 59. Bethesda: American Fisheries Society, Symposium 59; 2008. p. 155–65. Komen J, Bongers ABJ, Richter CJJ, van Muiswinkel WB, Huisman EA. Gynogenesis in common carp (Cyprinus carpio L.): II. The production of homozygous gynogenetic clones and F1 hybrids. Aquaculture. 1991;92:127–42. Paragamian VL. The effects of variable flows on burbot spawning migrations in the Kootenai River, Idaho, USA, and British Columbia, Canada. In: V. L. Paragamian and D. W. Willis, editors. Burbot: biology, ecology, and management. American Fisheries Society, Fisheries Management Section, Bethesda, Maryland. 2000;(1):111-123. Paragamian VL, Hansen MJ. Stocking for rehabilitation of burbot in the Kootenai River, Idaho, USA and British Columbia, Canada. J Appl Ichthyol. 2011;27:22–6. Paragamian VL, Pyper BJ, Daigeneault MJ, Beamesderfer RP, Ireland SC. Population dynamics and extinction risk of burbot in the Kootenai River, Idaho, USA and British Columbia, Canada. In: Paragamian VL, Bennett DH, editors. Burbot: ecology, management, and culture. Bethesda: American Fisheries Society Symposium 59; 2008. p. 213–34. https://collaboration.idfg.idaho.gov/FisheriesTechnicalReports/Population%20Dynamics%20and%20Extinction%20Risk%20of%20Burbot%20in%20the%20Kootenai%20River%20in%20Idaho%20and%20British%20Columbia.pdf. Accessed 20 May 2019. Ross, T. J., K. McDonnel, S. Stephenson, and R. S. Hardy. 2018. Kootenai River resident fish mitigation: White Sturgeon, Burbot, and native salmonid monitoring and evaluation. Annual Progress Report to the Bonneville Power Administration, Project 1988–065-00, Portland, Oregon. Stapanian MA, Paragamian VL, Madenjian CP, Jackson JR, Lappalainen J, Evenson MJ, et al. Worldwide status of burbot and conservation measures. Fish Fish. 2010;11:34–56. Struussmann CA, Moriyama S, Hanke EF, Cota JCC, Takashima F. Evidence of thermolabile sex determination in pejerrey*. J Fish Biol. 1996;48:643–51. Vandeputte M, Dupont‐Nivet M, Chavanne H, Chatain B. A Polygenic Hypothesis for Sex Determination in the European Sea Bass Dicentrarchus labrax. Genetics. 2007;176:1049-57. Vught I, Harzevili AS, Auwerx J, Charleroy DD. Aspects of reproduction and larviculture of burbot under hatchery conditions. 2007. https://pureportal.inbo.be/portal/en/publications/aspects-of-reproduction-and-larviculture-of-burbot-under-hatchery-conditions(6a2bfd7d-1023-42c2-88e3-5ef43f7ec5ea).html. Accessed 20 May 2019. Whitehead JA, Benfey TJ, Martin-Robichaud DJ. Ovarian development and sex ratio of gynogenetic Atlantic cod (Gadus morhua). Aquaculture. 2012;324–325:174–81.