Identification of risk factors for post-induction hypotension in patients receiving 5-aminolevulinic acid: a single-center retrospective study

Tomoaki Yatabe1, Takashi Karashima2, Motohiko Kume3, Yu Kawanishi4, Hideo Fukuhara2, Tetsuya Ueba4, Keiji Inoue2, Yoshiyasu Okuhara5, Masataka Yokoyama1
1Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
2Department of Urology, Kochi Medical School, Kochi, Japan
3Medical safety management center, Kochi Medical School Hospital, Kochi, Japan
4Department of Neurosurgery, Kochi Medical School, Kochi, Japan
5Center of Medical Information Science, Kochi Medical School, Kochi, Japan

Tóm tắt

Abstract Background

5-Aminolevulinic acid (5-ALA) is useful as a photodynamic agent, but its use commonly leads to hypotension. Although avoiding a mean arterial pressure (MAP) < 60 mmHg is important, the incidence of MAP < 60 mmHg when using 5-ALA is unclear. Therefore, we conducted a retrospective study to assess the incidence of post-induction hypotension and identified risk factors of this phenomenon.

Methods

One-hundred and seventy-two consecutive patients who underwent transurethral resection of the bladder tumor or craniotomy with the use of 5-ALA were enrolled. The primary outcome was the incidence of post-induction hypotension, defined as MAP < 60 mmHg during the first 1 h after anesthesia induction. We divided participants into the normal blood pressure group (group N) and the hypotension group (group L).

Results

The incidence of post-induction hypotension was 70% (group L = 121, group N = 51). Multivariate analysis revealed that female sex was an independent factor of post-induction hypotension (odds ratio [OR] 3.95; 95% confidence interval [CI] 1.21–12.97; p = 0.02). Systolic blood pressure < 100 mmHg before anesthesia induction and general anesthesia were also identified as significant independent factors (OR 13.30; 95% CI 1.17–151.0; p = 0.04 and OR 25.84; 95% CI 9.80–68.49; p < 0.001, respectively).

Conclusions

The incidence of post-induction hypotension was 70% in patients using 5-ALA. Female sex, systolic blood pressure < 100 mmHg before anesthesia induction, and general anesthesia might be independent factors of post-induction hypotension when using 5-ALA.

Từ khóa


Tài liệu tham khảo

Namikawa T, Fujisawa K, Munekage E, Iwabu J, Uemura S, Tsujii S, et al. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source. Medical molecular morphology. 2018;51(4):187–93.

Sachar M, Anderson KE, Ma X. Protoporphyrin IX: the good, the bad, and the ugly. The Journal of pharmacology and experimental therapeutics. 2016;356(2):267–75.

Chou R, Selph S, Buckley DI, Fu R, Griffin JC, Grusing S, et al. Comparative effectiveness of fluorescent versus white light cystoscopy for initial diagnosis or surveillance of bladder cancer on clinical outcomes: systematic review and meta-analysis. The Journal of urology. 2017;197(3 Pt 1):548–58.

Gandhi S, Tayebi Meybodi A, Belykh E, Cavallo C, Zhao X, Syed MP, et al. Survival outcomes among patients with high-grade glioma treated with 5-aminolevulinic acid-guided surgery: a systematic review and meta-analysis. Frontiers in oncology. 2019;9:620.

Osman E, Alnaib Z, Kumar N. Photodynamic diagnosis in upper urinary tract urothelial carcinoma: a systematic review. Arab journal of urology. 2017;15(2):100–9.

Yatabe T, Marie S-L, Fukuhara H, Karashima T, Inoue K, Yokoyama M. 5-Aminolevulinic acid-induced severe hypotension during transurethral resection of a bladder tumor: a case report. JA Clinical Reports. 2019;5(1):58.

Nohara T, Kato Y, Nakano T, Nakagawa T, Iwamoto H, Yaegashi H, et al. Intraoperative hypotension caused by oral administration of 5-aminolevulinic acid for photodynamic diagnosis in patients with bladder cancer. International journal of urology : official journal of the Japanese Urological Association. 2019. https://doi.org/10.1111/iju.14099.

Chung IW, Eljamel S. Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection. Photodiagnosis and photodynamic therapy. 2013;10(4):362–7.

Sessler DI, Bloomstone JA, Aronson S, Berry C, Gan TJ, Kellum JA, et al. Perioperative Quality Initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. British journal of anaesthesia. 2019;122(5):563–74.

Bondad J, Aboumarzouk OM, Moseley H, Kata SG. Oral 5-aminolevulinic acid induced photodynamic diagnostic ureterorenoscopy--does the blood pressure require monitoring? Photodiagnosis and photodynamic therapy. 2013;10(1):39–41.

Pleym H, Spigset O, Kharasch ED, Dale O. Gender differences in drug effects: implications for anesthesiologists. Acta anaesthesiologica Scandinavica. 2003;47(3):241–59.

Schwartz JB, INTRODUCTION TO. DRUG METABOLISM. In: Legato MJ, editor. Principles of gender-specific medicine. San Diego: Academic Press; 2004. p. 825–9.

Mingone CJ, Gupte SA, Chow JL, Ahmad M, Abraham NG, Wolin MS. Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation. American journal of physiology Lung cellular and molecular physiology. 2006;291(3):L337–44.