Identification of risk areas for <i>Orobanche cumana</i> and <i>Phelipanche aegyptiaca</i> in China, based on the major host plant and CMIP6 climate scenarios

Ecology and Evolution - Tập 12 Số 4 - 2022
Lu Zhang1,2, Xiaolei Cao1,2, Zhaoqun Yao1, Xue “Snow” Dong1, Meixiu Chen1, Lifeng Xiao1, Sifeng Zhao2
1Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, China
2Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, China

Tóm tắt

AbstractParasitic broomrape of the genus Orobanche poses a formidable threat to producing many crops in Europe, Africa, and Asia. Orobanche cumana and Phelipanche aegyptiaca are two of China's most destructive root parasitic plants, causing extreme sunflower, tomato, melon, and tobacco damage. However, the potentially suitable areas of O. cumana and P. aegyptiaca in China have not been predicted, and little is known about the important environmental factors that affect their extension. Due to their invasiveness and economic importance, studying how climate change and host plants may affect broomrapes’ distribution is necessary. In the study, we first predicted the potentially suitable areas of the invasive weeds (O. cumana and P. aegyptiaca) and their susceptible host plants (Helianthus annuus and Solanum lycopersicon) using MaxEnt. Then, the risk zones and distribution shifts of two broomrapes under different climate conditions were identified by incorporating the distribution of their susceptible host plants. The results highlighted that the potential middle‐ and high‐risk zones for Ocumana and P. aegyptiaca amounted to 197.88 × 104 km2 and 12.90 × 104 km2, respectively. Notably, Xinjiang and Inner Mongolia were the highest‐risk areas within the distribution and establishment of O. cumana and P. aegyptiaca. Elevation and topsoil pH were the decisive factors for shaping O. cumana distribution; precipitation seasonality and annual precipitation were the dominant bioclimatic variables limiting the spread of P. aegyptiaca. The potentially suitable areas and risk zones of O. cumana would decrease significantly, and those of P. aegyptiaca would fluctuate slightly under future climate change scenarios. Overall, our study suggested that the two broomrapes’ risk zones will significantly northward to higher latitudes. The results will provide suggestions for preventing O. cumana and P. aegyptiaca.

Từ khóa


Tài liệu tham khảo

10.1590/0001‐3765201820180098

10.1038/s41598‐019‐47893‐z

10.1038/nature10548

10.1111/gcb.12557

10.1111/2041‐210X.12200

10.1111/1748‐5967.12253

Chai A. L., 2013, The parasitic weed Phelipanche aegyptiaca has serious damage to tomato in Xinjiang, China Vegetables, 17, 20

10.1007/s10340‐020‐01308‐5

10.26655/JRWEEDSCI.2020.2.4

10.1111/j.1439‐037X.1996.tb00479.x

10.19802/j.issn.1007‐9084.2019216

Dinesha M. S., 2013, Broomrape (Orobanche cernua) germination biology, population dynamics and its control in tomato (Lycopersicon esculentum) fields in Karnataka, Journal of Progressive Agriculture, 4, 15

10.1094/PDIS‐01‐18‐0020‐FE

10.1614/0043-1745(2003)051[0279:EOTOSO]2.0.CO;2

10.1093/jxb/erg129

10.1111/j.1472‐4642.2010.00725.x

10.1111/j.1365‐3180.2010.00768.x

10.1006/anbo.1998.0948

Fischer G., 2008, Global agro‐ecological zones assessment for agriculture (GAEZ 2008)

10.1111/j.1365‐2486.2011.02614.x

Foy C. L., 1989, Recent approaches for chemical control of broomrape (Orobanche spp.). Reviews of, Weed Science, 5, 123

10.16445/j.cnki.1000‐2340.2019.04.019

Gevezova M., 2012, Recent advances in broomrapes research, Journal of Bioscience & Biotechnology, 1, 91

10.5194/gmd‐2018‐266

10.1111/j.0906‐7590.2006.04700.x

10.1111/j.1365‐3180.2009.00739.x

10.1002/joc.1276

10.1080/13102818.2017.1420427

10.1371/journal.pone.0132326

10.1111/brv.12282

10.2307/2419720

10.1111/j.1365‐3180.2009.00748.x

Johkan M., 2011, Crop Production and Global Warming// Global Warming Impacts ‐ Case Studies on the Economy, Human Health, and on Urban and Natural Environments

Kacan K., 2012, Effect of planting time and tomato varieties on broomrape (Phelipanche aegyptiaca) emergence and tomato yield in western Turkey, Research on Crop, 13, 1070

10.1007/s10530‐018‐1690‐7

10.1046/j.1365‐3180.1999.00138.x

10.1017/S0960258500000131

10.1126/science.1156831

10.1007/s11240‐018‐1466‐x

10.2478/intag‐2013‐0017

10.1186/s12898‐018‐0165‐0

Mariam E. G., 2004, Effect of nitrogen fertilizers on branched broomrape (Orobanche ramosa L.) in tomato (Lycopersicon esculentum Mill.), Kasetsart Journal, 38, 311

10.3923/rjbsci.2012.307.311

10.1579/05‐R‐051R.1

10.1016/j.ecoinf.2019.04.003

10.7717/peerj.3093

10.1111/2041‐210X.12261

10.1146/annurev.py.18.090180.002335

Narges M., 2014, Effect of nitrogen fertilizers on the yield of host plant, sunflower (Helianthus annuus) in presence of parasitic plant (Orobanche aegyptiaca), Research Journal of Biological Science, 9, 188

10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2

10.1002/tax.12195

Nickrent D. L., 2004, Introduction to parasitic flowering plants. The Plant Health Instructor

10.1002/ps.1713

10.1614/WS‐D‐11‐00068.1

10.1016/S0304‐3800(99)00227‐6

10.1111/j.1600‐0587.2010.06386.x

10.1016/j.ecolmodel.2007.11.008

10.1111/j.0906‐7590.2008.5203.x

Punia S. S., 2014, Biology and control measures of Orobanche, Indian Journal of Weed Science, 46, 36

10.1016/j.gecco.2017.02.004

10.1016/j.foreco.2017.03.030

10.1007/s10584‐019‐02460‐3

10.1007/s10340‐021‐01411‐1

10.21203/rs.2.19302/v1

10.1016/j.cropro.2005.12.012

10.1021/es503223k

10.1094/PDIS‐07‐14‐0721‐PDN

10.7606/j.issn.1000‐4025.2018.09.1717

10.1051/ocl/2020023

10.1016/j.ecolm

10.7717/peerj.6052

10.3969/j.issn.1001‐4705.2005.02.012

10.1111/j.1365‐3180.2005.00477.x

10.1094/PDIS.2001.85.5.553

10.1126/science.3287615

10.1038/nature02121

10.1590/S0100‐83582014000100012

10.1016/j.icvts.2004.01.008

10.1016/j.ecoinf.2019.02.005

10.1111/j.1654‐1103.2005.tb02394.x

10.1038/s41598‐017‐04607‐7

10.1016/j.scitotenv.2019.133979

10.1016/j.cub.2011.11.011

10.1007/978-0-387-98141-3

10.1111/j.1365‐2486.2007.01418.x

10.3969/j.issn.1003‐935X.2006.02.026

Wu W. L., 2020, Investigation of present occurrence and infestation of Orobanche cumana Wallr. in China, Plant Protection, 46, 266

10.3969/j.Issn.2095‐1787.2017.01.004

10.3390/f11040434

10.1016/j.ecoleng.2016.04.010

10.1007/s10584‐020‐02722‐5

10.13332/j.1000‐1522.20150516

Zhang J. L., 1994, The host and distribution of Cuscuta L. and Orobanche L, Plant Quarantine, 8, 69

10.1016/j.scitotenv.2018.04.112

10.3969/j.issn.2095‐3704.2016.03.046

Zhang X. K., 2012, Distribution, harmfulness and its assessment of Orobanche aegyptiaca in Xinjiang province, Plant Quarantine, 06, 31

10.1016/j.ecolind.2021.108256