Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study

Scientific Reports - Tập 7 Số 1
Stéphanie-Marie Deutsch1, Mahendra Mariadassou2, Pierre Nicolas2, Sandrine Parayre3, Rozenn Le Guellec1, Victoria Chuat1, Vincent Péton1, Caroline Le Maréchal1, Julien Burati2, Valentin Loux2, Valérie Briard‐Bion1, Julien Jardin1, Coline Plé4, Benoît Foligné4, Gwénaël Jan1, Hélène Falentin1
1STLO - Science et Technologie du Lait et de l'Oeuf (65, rue de Saint Brieuc 35042 Rennes - France)
2MaIAGE - Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (Bât. 233, Domaine de Vilvert - 78352 Jouy-en-Josas Cedex - France)
3Chercheur indépendant (France)
4CIIL - Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (1 Rue du Professeur Calmette - Lille Cedex - 59019 - BP 245 - France)

Tóm tắt

Abstract

Propionibacterium freudenreichii, a dairy starter, can reach a population of almost 109 propionibacteria per gram in Swiss-type cheese at the time of consumption. Also consumed as a probiotic, it displays strain-dependent anti-inflammatory properties mediated by surface proteins that induce IL-10 in leukocytes. We selected 23 strains with varied anti-inflammatory potentials in order to identify the protein(s) involved. After comparative genomic analysis, 12 of these strains were further analysed by surface proteomics, eight of them being further submitted to transcriptomics. The omics data were then correlated to the anti-inflammatory potential evaluated by IL-10 induction. This comparative omics strategy highlighted candidate genes that were further subjected to gene-inactivation validation. This validation confirmed the contribution of surface proteins, including SlpB and SlpE, two proteins with SLH domains known to mediate non-covalent anchorage to the cell-wall. Interestingly, HsdM3, predicted as cytoplasmic and involved in DNA modification, was shown to contribute to anti-inflammatory activity. Finally, we demonstrated that a single protein cannot explain the anti-inflammatory properties of a strain. These properties therefore result from different combinations of surface and cytoplasmic proteins, depending on the strain. Our enhanced understanding of the molecular bases for immunomodulation will enable the relevant screening for bacterial resources with anti-inflammatory properties.

Từ khóa


Tài liệu tham khảo

Thierry, A. et al. New insights into physiology and metabolism of Propionibacterium freudenreichii . Int. J. Food Microbiol. 149, 19–27 (2011).

Zarate, G. In Probiotic in Animals(ed. Rigobelo, E. ), doi: 10.5772/50320 (InTech, 2012).

Falentin, H. et al. The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications. PloS One 5, e11748 (2010).

Falentin, H. et al. Permanent draft genome sequence of the probiotic strain Propionibacterium freudenreichii CIRM-BIA 129 (ITG P20). Stand. Genomic Sci. 11 (2016).

Koskinen, P. et al. Complete genome sequence of Propionibacterium freudenreichii DSM 20271(T). Stand. Genomic Sci. 10, 83 (2015).

Loux, V. et al. Mutations and genomic islands can explain the strain dependency of sugar utilization in 21 strains of Propionibacterium freudenreichii . BMC Genomics 16, 296 (2015).

Foligné, B. et al. Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo . Appl. Environ. Microbiol. 76, 8259–8264 (2010).

Myllyluoma, E., Ahonen, A.-M., Korpela, R., Vapaatalo, H. & Kankuri, E. Effects of Multispecies Probiotic Combination on Helicobacter pylori Infection In Vitro . Clin. Vaccine Immunol. 15, 1472–1482 (2008).

Kekkonen, R.-A. et al. Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults. World J. Gastroenterol. WJG 14, 2029–2036 (2008).

Foligné, B. et al. Immunomodulation properties of multi-species fermented milks. Food Microbiol. 53, 60–69 (2016).

Plé, C. et al. Single-strain starter experimental cheese reveals anti-inflammatory effect of Propionibacterium freudenreichii CIRM BIA 129 in TNBS-colitis model. J. Funct. Foods 18, 575–585 (2015).

Uchida, M. & Mogami, O. Milk whey culture with Propionibacterium freudenreichii ET-3 is effective on the colitis induced by 2,4,6-trinitrobenzene sulfonic acid in rats. J. Pharmacol. Sci. 99, 329–334 (2005).

Cousin, F. J. et al. Assessment of the probiotic potential of a dairy product fermented by Propionibacterium freudenreichii in piglets. J. Agric. Food Chem. 60, 7917–7927 (2012).

Okada, Y. et al. Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing. Gut 55, 681–688 (2006).

Okada, Y. et al. 1,4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines. J. Leukoc. Biol. 94, 473–480 (2013).

Deutsch, S.-M., Falentin, H., Dols-Lafargue, M., Lapointe, G. & Roy, D. Capsular exopolysaccharide biosynthesis gene of Propionibacterium freudenreichii subsp. shermanii. Int. J. Food Microbiol. 125, 252–258 (2008).

Deutsch, S.-M. et al. Correlation of the capsular phenotype in Propionibacterium freudenreichii with the level of expression of gtf, a unique polysaccharide synthase-encoding gene. Appl. Environ. Microbiol. 76, 2740–2746 (2010).

Deutsch, S.-M. et al. Contribution of Surface β-Glucan polysaccharide to physicochemical and immunomodulatory properties of Propionibacterium freudenreichii . Appl. Environ. Microbiol. 78, 1765–1775 (2012).

Le Marechal, C. et al. Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties. J. Proteomics 113, 447–461 (2015).

Barinov, A. et al. Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics 9, 61–73 (2009).

Vieira, A. T., Fukumori, C. & Ferreira, C. M. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clin. Transl. Immunol. 5, e87 (2016).

Kaur, N., Chen, C.-C., Luther, J. & Kao, J. Y. Intestinal dysbiosis in inflammatory bowel disease. Gut Microbes 2, 211–216 (2011).

Albenberg, L. G. & Wu, G. D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146, 1564–1572 (2014).

David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

Mitsuyama, K. et al. Treatment of Ulcerative Colitis with Milk Whey Culture with Propionibacterium freudenreichii . J. Intest. Microbiol. 21, 143–147 (2007).

Johnson, B., Selle, K., O’Flaherty, S., Goh, Y. J. & Klaenhammer, T. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiol. Read. Engl. 159, 2269–2282 (2013).

Konstantinov, S. R. et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. USA 105, 19474–19479 (2008).

Taverniti, V. et al. S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity. Appl. Environ. Microbiol. 79, 1221–1231 (2013).

Rong, J. et al. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiol. 15 (2015).

Macho Fernandez, E. et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60, 1050–1059 (2011).

Grangette, C. et al. From The Cover: Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl. Acad. Sci. 102, 10321–10326 (2005).

Lortal, S., Rouault, A., Cesselin, B. & Sleytr, U. B. Paracrystalline surface layers of dairy propionibacteria. Appl. Environ. Microbiol. 59, 2369–2374 (1993).

Bergonzelli, G. E. et al. GroEL of Lactobacillus johnsonii La1 (NCC533) is cell surface associated: potential role in interaction with the host and the gastric pathogen Helicobacter pylori. Infect. Immun. 74, 425–434 (2006).

Hevia, A., Delgado, S., Sánchez, B. & Margolles, A. Molecular Players Involved in the Interaction Between Beneficial Bacteria and the Immune System. Front. Microbiol. 6 (2015).

Malik, A. C., Reinbold, G. W. & Vedamuthu, E. R. An evaluation of the taxonomy of Propionibacterium. Can. J. Microbiol. 14, 1185–1191 (1968).

Cousin, F. J. et al. The first dairy product exclusively fermented by Propionibacterium freudenreichii: A new vector to study probiotic potentialities in vivo . Food Microbiol. 32, 135–146 (2012).

Foligné, B. et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J. Gastroenterol. WJG 13, 236–243 (2007).

Holvoet, S., Zuercher, A. W., Julien-Javaux, F., Perrot, M. & Mercenier, A. Characterization of Candidate Anti-Allergic Probiotic Strains in a Model of Th2-Skewed Human Peripheral Blood Mononuclear Cells. Int. Arch. Allergy Immunol. 161, 142–154 (2013).

Araujo, R., Rodrigues, A. G. & Pina-Vaz, C. A fast, practical and reproducible procedure for the standardization of the cell density of an Aspergillus suspension. J. Med. Microbiol. 53, 783–786 (2004).

Felsenstein, J. Inferring Phylogenies. (Sinauer Associates Inc.,U.S., 2002).

Saraoui, T. et al. A unique in vivo experimental approach reveals metabolic adaptation of the probiotic Propionibacterium freudenreichii to the colon environment. BMC Genomics 14, 911 (2013).

Wernersson, R. & Nielsen, H. B. OligoWiz 2.0–integrating sequence feature annotation into the design of microarray probes. Nucleic Acids Res. 33, W611–615 (2005).

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67 (2015).