Xác định các locus tính trạng định lượng của rễ brace ở ngô trong quần thể các dòng nơron lai phân giả

Euphytica - Tập 214 - Trang 1-12 - 2018
Ao Zhang1,2,3, Zhenhai Cui1,2, Cong Li1,2, Jinhong Luo4, Yixin Guan5, Lingli Liu1,2, Zhuang Zhang6, Lijun Zhang1,2, Yan He4, Yanye Ruan1,2, Haiqiu Yu3
1College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
2Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
3College of Agronomy, Shenyang Agricultural University, Shenyang, China
4Genetic Improvement, China Agricultural University, National Maize Improvement Center of China, Beijing Key Laboratory of Crop, Beijing, China
5Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
6Tieling County Agricultural Technology Extension and Service Center, Tieling, China

Tóm tắt

Rễ brace là các thành phần quan trọng trong hệ thống rễ của cây ngô. Sự đóng góp của chúng vào sự phát triển của cây trồng bị ảnh hưởng bởi các đặc điểm của rễ brace (BRTs) bao gồm số mức (TN), số lượng rễ (RN) và bán kính của rễ brace (RBR). Tuy nhiên, sự kiểm soát di truyền đối với BRTs vẫn còn mơ hồ. Trong nghiên cứu này, chúng tôi đã xác định các locus tính trạng định lượng (QTLs) từ 207 dòng nơron lai phân giả BY815/K22 được trồng trong ba môi trường khác nhau nhằm phân tích kiến trúc di truyền của BRTs ở ngô. Tất cả ba loại BRT đều có tính di truyền cao và bị ảnh hưởng bởi kiểu gen, môi trường và sự tương tác giữa chúng. RBR có mối tương quan dương với cả RN và TN. Chúng tôi đã xác định được tám QTL, trong đó có 3 QTL cho TN, 3 QTL cho RN và 2 QTL cho RBR, được đặt trên nhiễm sắc thể 1, 2, 9 và 10. Các QTL này cùng nhau giải thích 26,4% (TN), 21,5% (RN) và 13,4% (RBR) của sự biến thiên biểu hiện. Sáu mươi gen đã được chú thích được xác định từ các QTL hẹp hơn bằng phương pháp bản đồ nhị phân, bao gồm các gen liên quan đến chuyển tín hiệu, điều hòa biểu hiện gen và chuyển hóa cũng như các quá trình liên quan. Kết quả cũng cho thấy rằng sự tương tác có thể xảy ra giữa các QTL cho BRTs. Các kết quả của chúng tôi có thể giúp nghiên cứu thêm về cơ sở di truyền của BRTs và cải thiện các phương pháp kiểm soát hệ thống rễ brace của ngô thông qua lựa chọn dựa trên dấu hiệu SNP.

Từ khóa

#BRTs #ngô #locus tính trạng định lượng #rễ brace #di truyền

Tài liệu tham khảo

Aiken RM, Smucker AJ (1996) Root system regulation of whole plant growth. Annu Rev Phytopathol 34:325–346 Azevedo GC et al (2015) Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biol 15:172 Bennetzen JL, Hake SC. (eds) (2005) Handbook of maize: Its biology. Springer, New York, NY de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARHTA GENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704 Demotesmainard S, Pellerin S (1992) Effect of mutual shading on the emergence of nodal roots and the root/shoot ratio of maize. Plant Soil 147:87–93 Dyachok J et al (2008) Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol Plant 1:990–1006 Dyachok J, Zhu L, Liao F, He J, Huq E, Blancaflor EB (2011) SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. Plant Cell 23:3610–3626 Ganal MW et al (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334 Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287:8286–8296 He J, Li J, Huang Z, Zhao T, Xing G, Gai J, Guan R (2015) Composite interval mapping based on lattice design for error control may increase power of quantitative trait locus detection. PLoS ONE 10:e0130125 Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857 Hochholdinger F (2009) The maize root system: morphology, anatomy, and genetics. In Bennetzen JL, Hake SC (eds) Handbook of maize: Its biology. Springer, New York, NY Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177 Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann Bot 93:359–368 Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216 Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence-intervals for heritability on a progeny mean basis. Crop Sci 25:192–194 Ku LX et al (2012) QTL mapping and epistasis analysis of brace root traits in maize. Mol Breed 30:697–708 Kutschmar A, Rzewuski G, Stuhrwohldt N, Beemster GT, Inze D, Sauter M (2009) PSK-alpha promotes root growth in Arabidopsis. New Phytol 181:820–831 Ladwig F, Dahlke RI, Stuhrwohldt N, Hartmann J, Harter K, Sauter M (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell 27:1718–1729 Li YJ, Fu YR, Huang JG, Wu CA, Zheng CC (2011) Transcript profiling during the early development of the maize brace root via Solexa sequencing. FEBS J 278:156–166 Li Q et al (2012) Genome-wide association studies identified three independent polymorphisms associated with alpha-tocopherol content in maize kernels. PLoS ONE 7:e36807 Liu P et al (2013) Transcript profiling of microRNAs during the early development of the maize brace root via Solexa sequencing. Genomics 101:149–156 Machesky LM et al (1999) Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci U S A 96:3739–3744 Matsubayashi Y, Shinohara H, Ogawa M (2006) Identification and functional characterization of phytosulfokine receptor using a ligand-based approach. Chem Rec 6:356–364 Mezard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534 Noblet A, Leymarie J, Bailly C (2017) Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Sci Rep 7:8886 Pan Q et al (2016) Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol 210:1083–1094 Pan Q, Deng M, Yan J, Li L (2017) Complexity of genetic mechanisms conferring nonuniformity of recombination in maize. Sci Rep 7:1205 Pellerin S (1994) Number of maize nodal roots as affected by plant density and nitrogen fertilization: relationships with shoot growth. Eur J Agron 3:101–110 Pellerin S, Mollier A, Plenet D (2000) Phosphorus deficiency affects the rate of emergence and number of maize adventitious nodal roots. Agron J 92:690–697 Pollitt AY, Insall RH (2009) WASP and SCAR/WAVE proteins: the drivers of actin assembly. J Cell Sci 122:2575–2578 Reichel M et al (2016) In planta determination of the mRNA-binding proteome of arabidopsis etiolated seedlings. Plant Cell 28:2435–2452 Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16:403–412 Saengwilai P, Tian XL, Lynch JP (2014) Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize plant. Physiology 166:581–589 Sauter M (2015) Phytosulfokine peptide signalling. J Exp Bot 66:5161–5169 Sharma S, Carena MJ (2016) BRACE: a method for high throughput maize phenotyping of root traits for short-season drought tolerance. Crop Sci 56:2996–3004 Shen-Miller J, McNitt RE, Wojciechowski M (1978) Regions of differential cell elongation and mitosis, and root meristem morphology in different tissues of geotropically stimulated maize root apices. Plant Physiol 61:7–12 Soderman E, Mattsson J, Engstrom P (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10:375–381 Tai H et al (2016) Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.). J Exp Bot 67:1123–1135 Thomas AL, Kaspar TC (1997) Maize nodal root response to time of soil ridging. Agron J 89:195–200 Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721 Tuberosa R, Salvi S, Giuliani S, Sanguineti MC, Frascaroli E, Conti S, Landi P (2011) Genomics of root architecture and functions in maize. Springer, Berlin Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40 Varney GT, Canny MJ (1993) Rates of water uptake into the mature root system of maize plants. New Phytol 123:775–786 Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm Wang T et al (2013) Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC Plant Biol 15:288. https://doi.org/10.1186/s12870-015-0675-2 Wang T et al (2015) Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC Plant Biol 15:288 Wilmoth JC et al (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130 Wu X et al (2016) Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J 14:1551–1562 Yang X et al (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431 Yemets A, Sheremet Y, Vissenberg K, Van Orden J, Verbelen JP, Blume YB (2008) Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells. Cell Biol Int 32:630–637 Yoon EK, Yang JH, Lee WS (2010) Auxin and abscisic acid responses of auxin response factor 3 in Arabidopsis lateral root development. J Plant Biol 53:150–154 York LM, Lynch JP (2015) Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. J Exp Bot 66:5493–5505 York LM, Nord EA, Lynch JP (2013) Integration of root phenes for soil resource acquisition. Front Plant Sci 4:355 Young LS, Harrison BR, Narayana Murthy UM, Moffatt BA, Gilroy S, Masson PH (2006) Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis. Plant Physiol 142:564–573 Zhai L, Liu Z, Zou X, Jiang Y, Qiu F, Zheng Y, Zhang Z (2013) Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiol Plant 147:181–193 Zhang Z et al (2018) The genetic architecture of nodal root number in maize. Plant J 93:1032–1044