Identification of genes required for eye development by high-throughput screening of mouse knockouts

Communications Biology - Tập 1 Số 1
Bret A. Moore1, Brian C. Leonard2, Lionel Sebbag1, Sydney Edwards1, Ann Cooper1, Denise M. Imai3, Ewan Straiton4, Luís Santos4, Christopher M. Reilly3, Stephen M. Griffey3, Lynette Bower5, Dave Clary5, Jeremy Mason6, Michelle Simon7, Hamid Méziane7, Yann Hérault7, Anna Swan4, Ruairidh King4, Piia Keskivali-Bond4, Lois Kelsey8, Igor Vukobradovic8, Dawei Qu8, Ruolin Guo8, Elisa Tran8, Lily Morikawa8, Milan Ganguly8, Napoleon Law8, Xueyuan Shang8, Patricia Feugas8, Yanchun Wang8, Yingchun Zhu8, Kyle Duffin8, Ayexa Ramirez8, Patricia Penton8, Valerie Laurin8, Shannon Clarke8, Qing Lan8, Gillian Sleep8, Amie Creighton8, Elsa Jacob8, Heather Cater8, Joanna Joeng8, Marina Gertsenstein8, Monica Pereira8, Sue MacMaster8, Sandra Tondat8, Thomas J. Carroll8, Jorge Cabezas8, Je Kyung Seong8, Jane Hunter8, Gregory B. Clark8, Mohammed Bubshait8, D. Craig Miller8, Khondoker Sohel8, Alexandr Bezginov8, Matthew McKay9, Kevin Peterson9, Leslie Goodwin9, Rachel Urban9, Susan Kales9, Robin Hallett9, Dong Nguyen-Bresinsky9, Timothy Leach9, Audrie Seluke9, Sara Perkins9, Ann‐Marie Mallon9, Rick Bedigian9, Leah Rae Donahue9, Robert A. Taft9, James M. Denegre9, Zachery Seavey9, Amelia Willett9, Lindsay Bates9, Leslie Haynes9, Julie Creed9, Catherine Witmeyer9, Willson Roper9, James Clark9, Pamela Stanley9, Samantha Burrill9, Jennifer Ryan9, Yuichi Obata10, Masaru Tamura10, Hideki Kaneda10, Tamio Furuse10, Kimio Kobayashi10, Ikuo Miura10, Ikuko Yamada10, Hiroshi Masuya10, Nobuhiko Tanaka10, Shin‐ichi Ayabe10, Atsushi Yoshiki10, Valerie E. Vancollie11, Francesco Chiani12, Paul Dent12, Gianfranco Di Segni12, Olga Ermakova12, Fabrizio Ferrara12, Paolo Fruscoloni12, Alessia Gambadoro12, Serena Gastaldi12, Elisabetta Golini12, Gina La Sala12, Silvia Mandillo12, Daniela Marazziti12, Marzia Massimi12, Rafaele Matteoni12, Tiziana Orsini12, Miriam Pasquini12, Marcello Raspa12, Aline Rauch12, G. F. Rossi12, Nicoletta Rossi12, Sabrina Putti12, Ferdinando Scavizzi12, Glauco P. Tocchini‐Valentini12, Colin McKerlie13, Ann M. Flenniken14, Goo Taeg Oh13, Zorana Berberovic14, Celeste Owen14, Hibret A. Adissu14, Mohammed Eskandarian14, Chih‐Wei Hsu15, Sowmya Kalaga15, Uchechukwu Udensi15, Chinwe Asomugha15, Ritu Bohat9, Juan Gallegos9, John R. Seavitt9, Jason D. Heaney9, Arthur L. Beaudet9, Mary E. Dickinson9, Vivek M. Philip16, Vivek Kumar16, Karen L. Svenson16, Robert E. Braun16, Sara Wells4, Michelle Stewart4, Russell Joynson4, Xiang Gao17, Tomohiro Suzuki10, Shigeharu Wakana10, Damian Smedley18, Mark W. Moore19, Colin Fletcher20, Natasha A. Karp11, Ramiro Ramírez‐Solis11, Jacqueline K. White11, Martin Hrabě de Angelis21, Wolfgang Wurst21, Sara M. Thomasy22, Paul Flicek6, Helen Parkinson6, S.D.M. Brown4, Terrence F. Meehan6, Patsy M. Nishina16, Stephen A. Murray16, Mark P. Krebs16, K. C. Kent Lloyd5, Christopher J. Murphy22, Ala Moshiri22
1William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
2Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
3Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
4Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
5Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
6European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
7Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
8The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
9Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
10RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
11The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
12Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, I-00015, Monterotondo Scalo, Italy
13The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
14Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
15Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
16The Jackson Laboratory, Bar Harbor, ME 04609, USA
17SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
18Clinical Pharmacology, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
19International Mouse Phenotyping Consortium, San Anselmo, CA, 94960, USA
20National Institutes of Health, Bethesda, MD, 20205 USA
21German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
22Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA

Tóm tắt

AbstractDespite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease.

Từ khóa


Tài liệu tham khảo

Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthal. 122, 477–485 (2004).

Ko, F. et al. Prevalence of nonrefractive visual impairment in US adults and associated risk factors, 1999–2002 and 2005–2008. JAMA 308, 2361–2368 (2012).

Bourne, R., Price, H. & Stevens, G. Global burden of visual impairment and blindness. Arch. Ophthalmol. 130, 645–647 (2012).

Stone, E. M. et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmol 124, 1314–1331 (2017).

Warwick, A. & Lotery, A. Genetics and genetic testing for age-related macular degeneration. Eye (Lond). 32, 849–857 (2017).

Hrabe de Angelis, M. et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet. 47, 969–978 (2015).

White, J. K. et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452–464 (2013).

The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucl. Acids Res. 45, D331–D338 (2017).

Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).

Brown, S. D. & Moore, M. W. Towards an encyclopedia of mammalian gene function: the International Mouse Phenotyping Consortium. Dis. Model Mech. 5, 289–292 (2012).

Brown, S. D. & Moore, M. W. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm. Genome 23, 632–640 (2012).

Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

Morgan, H., Simon, M. & Mallon, A. M. Accessing and mining data from large-scale mouse phenotyping projects. Int. Rev. Neurobiol. 104, 47–70 (2012).

Bowl, M. R. et al. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat. Commun. 8, 886 (2017).

Rozman, J. et al. Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nat. Commun. 9, 288 (2018).

Dryja, T. P. et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343, 364–366 (1990).

Sung, C. H. et al. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc. Natl Acad. Sci. USA 88, 6481–6485 (1991).

Wang, S. K. et al. FAM20A mutations can cause enamel-renal syndrome (ERS). J. Dent. Res. 93, 42–48 (2014).

Kantaputra, P. N. et al. Enamel-Renal-Gingival syndrome, hypodontia, and a novel FAM20A mutation. Am. J. Med. Genet. A. 164A, 2124–2128 (2014).

Vogel, P. et al. Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet. Pathol. 49, 998–1017 (2012).

Liu, Y. et al. Gene expression profile of extracellular matrix and adhesion molecules in the human normal corneal stroma. Curr. Eye Res. 21, 1–8 (2016).

Kyuno, J., Fukui, A., Michiue, T. & Asashima, M. Identification and characterization of Xenopus NDRG1. Biochem. Biophys. Res. Commun. 309, 52–57 (2003).

Cen, G., Zhang, K., Cao, J. & Qiu, Z. Downregulation of the N-myc downstream regulated gene 1 is related to enhanced proliferation, invasion and migration of pancreatic cancer. Oncol. Rep. 37, 1189–1195 (2017).

Hunter, M. et al. NDRG1 interacts with APO A-I and A-II and is a functional candidate for the HDL-C QTL on 8q24. Biochem. Biophys. Res. Commun. 332, 982–992 (2005).

Shi, X. H., Larkin, J. C., Chen, B. & Sadovsky, Y. The expression and localization of N-myc downstream-regulated gene 1 in human trophoblasts. PLoS ONE 8, e75473 (2013).

Stein, S. et al. NDRG1 is necessary for p53-dependent apoptosis. J. Biol. Chem. 279, 48930–48940 (2004).

Takita, S., Wada, Y. & Kawamura, S. Effects of NDRG1 family proteins on photoreceptor outer segment morphology in zebrafish. Sci. Rep. 6, 36590 (2016).

Aldahmesh, M. A. et al. The syndrome of microcornea, myopic chorioretinal atrophy, and telecanthus (MMCAT) is caused by mutations in ADAMTS18. Hum. Mutat. 34, 1195–1199 (2013).

Chandra, A. et al. Expansion of ocular phenotypic features associated with mutations in ADAMTS18. J. Am. Med. Assoc. Ophthalmol. 132, 996–1001 (2014).

Ataca, D. et al. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development. Biol. Open. 5, 1585–1594 (2016).

Serrano, M., et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

Cheong, C. et al. Role of INK4a locus in normal eye development and cataract genesis. Mech. Ageing Dev. 127, 633–638 (2006).

Hohman, T. C. Hereditary Retinal Dystrophy. Handb. Exp. Pharmacol. 242, 337–367 (2016).

Miura, K. et al. ARAP1: a point of convergence for Arf and Rho signaling. Mol. Cell 9, 109–119 (2002).

Campa, F. et al. A PH domain in the Arf GTPase-activating protein (GAP) ARAP1 binds phosphatidylinositol 3,4,5-trisphosphate and regulates Arf GAP activity independently of recruitment to the plasma membranes. J. Biol. Chem. 284, 28069–28083 (2009).

Yoon, H. Y., Lee, J. S. & Randazzo, P. A. ARAP1 regulates endocytosis of EGFR. Traffic 9, 2236–2252 (2008).

Moshiri, A. et al. Arap1 deficiency causes photoreceptor degeneration in mice. Invest. Ophthalmol. Vis. Sci. 58, 1709–1718 (2017).

Dinamarca, M. C. et al. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. Elife 5, e12430 (2016).

Hoshikawa, S., Ogata, T., Fujiwara, S., Nakamura, K. & Tanaka, S. A novel function of RING finger protein 10 in transcriptional regulation of the myelin-associated glycoprotein gene and myelin formation in Schwann cells. PLoS ONE 3, e3464 (2008).

Charette, J. R. et al. A chemical mutagenesis screen identifies mouse models with ERG defects. Adv. Exp. Med. Biol. 854, 177–183 (2016).

Greenwald, S. H. et al. Mouse models of NMNAT1-leber congenital amaurosis (LCA9) recapitulate key features of the human disease. Am. J. Pathol. 186, 1925–1938 (2016).

Adachi, M. et al. Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight-junction proteins. Mol. Cell. Biol. 29, 2372–2389 (2009).

Feldner, A. et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol. Med. 9, 890–905 (2017).

van Rossum, A. G. et al. Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Muller glia cells. Hum. Mol. Genet. 15, 2659–2672 (2006).

van de Pavert, S. A. et al. Crb1 is a determinant of retinal apical Müller glia cell features. Glia 55, 1486–1497 (2007).

Al-Dosari, M. S. et al. Mutation in MPDZ causes severe congenital hydrocephalus. J. Med. Genet. 50, 54–58 (2013).

Saugier-Veber, P. et al. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene. Acta Neuropathol. Commun. 5, 36 (2017).

Shaheen, R. et al. The genetic landscape of familial congenital hydrocephalus. Ann. Neurol. 81, 890–897 (2017).

Periyasamy, P. et al. Age-related cataracts: Role of unfolded protein response, Ca2 + mobilization, epigenetic DNA modification, and loss of Nrf2/Keap1 dependent cytoprotection. Prog. Retin. Eye Res. 60, 1–19 (2017).

Datta, S. et al. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog. Retin. Eye Res. 60, 201–218 (2017).

Koscielny, G. et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucl. Acids Res. 42, 802–809 (2014).

Krebs, M. P. et al. Mouse models of human ocular disease for translational research. PLoS ONE 12, e0183837 (2017).

Mattapallil, M. J. et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest. Ophthalmol. Vis. Sci. 53, 2921–2927 (2012).

Low, B. E. et al. Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest. Ophthalmol. Vis. Sci. 55, 387–395 (2014).

Mehalow, A. K. et al. CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum. Mol. Genet. 12, 2179–2189 (2003).

Aleman, T. S. et al. Human CRB1-associated retinal degeneration: comparison with the rd8 Crb1-mutant mouse model. Invest. Ophthalmol. Vis. Sci. 52, 6898–6910 (2011).

Moore, B. A. et al. A population study of common ocular abnormalities in C57BL/6N Rd8 Mice. Invest. Ophthalmol. Vis. Sci. 59, 2252–2261 (2018).

Varshney, N. et al. A review of Von Hippel-Lindau Syndrome. J. Kidney Cancer Vhl. 4, 20–29 (2017).

Parisi, M. & Glass, I. Joubert Syndrome (GeneReviews, University of Washington, Seattle, 2017).

Weihbrecht, K., et al. Keeping an eye on Bardet-Biedl Syndrome: A comprehensive review of the role of Bardet-Biedl Syndrome genes in the eye. Med. Res. Arch. 5, https://doi.org/10.18103/mra.v5i9.1526.

Fritsche, L. G. et al. Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 15, 151–171 (2014).

Black, J. R. & Clark, S. J. Age-related macular degeneration: genome-wide association studies to translation. Genet. Med. 18, 283–289 (2016).

Cooke Bailey, J. N., Pericak-Vance, M. A. & Haines, J. L. Genome-wide association studies: getting to pathogenesis, the role of inflammation/complementin age-related macular degeneration. Cold Spring Harb. Perspect. Med. 4, a017186 (2014).

Scheetz, T. E. et al. A genome-wide association study for primary open angle glaucoma and macular degeneration reveals novel Loci. PLoS ONE 8, e58657 (2013).

Sheffield, V. C. & Stone, E. M. Genomics and the eye. N. Engl. J. Med. 364, 1932–1942 (2011).

van Huet, R. A. et al. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice. Mol. Vis. 21, 461–476 (2015).

Glöckle, N. et al. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur. J. Hum. Genet. 22, 99–104 (2014).

Neveling, K. et al. Next-generation genetic testing for retinitis pigmentosa. Hum. Mutat. 33, 963–972 (2012).

Searle, A. G., Edwards, J. H. & Hall, J. G. Mouse homologues of human hereditary disease. J. Med. Genet. 31, 1–19 (1994).

Gillespie, R. L. et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmol 121, 2124–2137 (2014).

Karp, N. A. et al. Applying the ARRIVE guidelines to an in vivo database. PLoS Biol. 13, e1002151 (2015).

Kurbatova, N., Mason, J. C., Morgan, H., Meehan, T. F. & Karp, N. A. PhenStat: A tool kit for standardized analysis of high throughput phenotypic data. PLoS ONE 10, e0131274 (2015).

Wolf, J. C. & Maack, G. Evaluating the credibility of histopathology data in environmental endocrine toxicity studies. Environ. Toxicol. Chem. 36, 601–611 (2017).

Ward, J. M., Schofield, P. N. & Sundberg, J. P. Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab. Anim. 46, 146–151 (2017).

Krebs, M. P., Xiao, M., Sheppard, K., Hicks, W. & Nishina, P. M. Bright-field imaging and optical coherence tomography of the mouse posterior eye. Methods Mol. Biol. 1438, 395–415 (2016).

Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucl. Acids Res. 34, D535–D539 (2006).

Patil, A., Nakai, K. & Nakamura, H. HitPredict: A database of quality assessed protein-protein interactions in nine species. Nucl. Acids Res. 39, D744–D749 (2011).

Orchard, S. et al. The MIntAct project - IntAct as a common curation platform for 11 molecular interaction databases. Nucl. Acids Res. 42, D358–D363 (2014).

Chatr-aryamontri, A. et al. MINT: the Molecular INTeraction database. Nucl. Acids Res. 35, D572–D574 (2007).

von Mering, C. et al. STRING: A database of predicted functional associations between proteins. Nucl. Acids Res. 31, 258–261 (2003).

Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).